10
78
(K10a
17
)
A knot diagram
1
Linearized knot diagam
4 9 5 2 7 1 10 3 8 6
Solving Sequence
6,10 1,4
2 7 8 5 3 9
c
10
c
1
c
6
c
7
c
5
c
3
c
9
c
2
, c
4
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= h−u
11
u
10
+ 2u
9
+ 3u
8
2u
7
4u
6
2u
5
+ u
4
+ 2u
3
+ u
2
+ b u 1,
u
11
u
10
+ 2u
9
+ 3u
8
2u
7
4u
6
2u
5
+ u
4
+ u
3
+ u
2
+ a u 1,
u
13
+ u
12
3u
11
4u
10
+ 4u
9
+ 7u
8
5u
6
3u
5
+ 3u
3
+ 2u
2
1i
I
u
2
= hu
20
6u
18
+ ··· + b 2u, 2u
21
+ u
20
+ ··· + a + 1, u
22
+ u
21
+ ··· 4u
2
+ 1i
I
u
3
= hb + 1, a + 2, u + 1i
* 3 irreducible components of dim
C
= 0, with total 36 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−u
11
u
10
+· · ·+b1, u
11
u
10
+· · ·+a1, u
13
+u
12
+· · ·+2u
2
1i
(i) Arc colorings
a
6
=
0
u
a
10
=
1
0
a
1
=
1
u
2
a
4
=
u
11
+ u
10
2u
9
3u
8
+ 2u
7
+ 4u
6
+ 2u
5
u
4
u
3
u
2
+ u + 1
u
11
+ u
10
2u
9
3u
8
+ 2u
7
+ 4u
6
+ 2u
5
u
4
2u
3
u
2
+ u + 1
a
2
=
u
12
+ u
11
2u
10
3u
9
+ 2u
8
+ 4u
7
+ 2u
6
u
5
u
4
u
3
+ u
2
+ u + 1
u
12
+ u
11
2u
10
3u
9
+ 2u
8
+ 4u
7
+ 2u
6
u
5
2u
4
u
3
+ 2u
2
+ u
a
7
=
u
u
3
+ u
a
8
=
u
3
u
3
+ u
a
5
=
u
3
u
5
u
3
+ u
a
3
=
u
11
+ u
10
2u
9
3u
8
+ 2u
7
+ 4u
6
+ u
5
u
4
u
3
u
2
+ u + 1
u
11
+ u
10
2u
9
3u
8
+ u
7
+ 4u
6
+ 3u
5
u
4
3u
3
u
2
+ u + 1
a
9
=
u
6
u
4
+ 1
u
6
2u
4
+ u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 2u
11
+ 2u
10
+ 8u
9
2u
8
16u
7
+ 12u
5
+ 10u
4
2u
3
2u
2
8u 4
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
6
c
10
u
13
u
12
3u
11
+ 4u
10
+ 4u
9
7u
8
+ 5u
6
3u
5
+ 3u
3
2u
2
+ 1
c
2
, c
8
u
13
+ 3u
12
+ ··· + 4u + 2
c
3
, c
5
u
13
+ 7u
12
+ ··· + 4u + 1
c
7
, c
9
u
13
3u
12
+ ··· + 4u + 4
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
6
c
10
y
13
7y
12
+ ··· + 4y 1
c
2
, c
8
y
13
+ 3y
12
+ ··· + 4y 4
c
3
, c
5
y
13
+ y
12
+ ··· + 8y 1
c
7
, c
9
y
13
+ 11y
12
+ ··· + 104y 16
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.915058 + 0.384331I
a = 0.86874 + 2.19716I
b = 1.22946 + 1.28849I
2.16179 3.07776I 9.60750 + 5.91774I
u = 0.915058 0.384331I
a = 0.86874 2.19716I
b = 1.22946 1.28849I
2.16179 + 3.07776I 9.60750 5.91774I
u = 0.992158 + 0.546170I
a = 1.43275 + 1.41238I
b = 1.52152 0.03761I
0.33005 + 7.56007I 5.81453 9.02411I
u = 0.992158 0.546170I
a = 1.43275 1.41238I
b = 1.52152 + 0.03761I
0.33005 7.56007I 5.81453 + 9.02411I
u = 0.613960 + 0.561299I
a = 0.334868 + 0.840411I
b = 0.013998 + 0.382511I
2.63797 + 1.38269I 0.35464 3.62793I
u = 0.613960 0.561299I
a = 0.334868 0.840411I
b = 0.013998 0.382511I
2.63797 1.38269I 0.35464 + 3.62793I
u = 0.089121 + 0.795435I
a = 0.065042 + 0.185799I
b = 0.103415 + 0.670130I
1.44691 2.76421I 4.50885 + 2.57748I
u = 0.089121 0.795435I
a = 0.065042 0.185799I
b = 0.103415 0.670130I
1.44691 + 2.76421I 4.50885 2.57748I
u = 1.216140 + 0.467752I
a = 2.46220 + 1.38514I
b = 3.46262 0.58793I
8.78542 6.00980I 11.90142 + 4.07839I
u = 1.216140 0.467752I
a = 2.46220 1.38514I
b = 3.46262 + 0.58793I
8.78542 + 6.00980I 11.90142 4.07839I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.231340 + 0.513532I
a = 2.38620 + 1.20321I
b = 3.27898 0.99721I
8.1203 + 12.5021I 10.75701 8.36275I
u = 1.231340 0.513532I
a = 2.38620 1.20321I
b = 3.27898 + 0.99721I
8.1203 12.5021I 10.75701 + 8.36275I
u = 0.590758
a = 1.22415
b = 1.01798
1.09585 8.11210
6
II.
I
u
2
= hu
20
6u
18
+· · ·+b2u, 2u
21
+u
20
+· · ·+a+1, u
22
+u
21
+· · ·4u
2
+1i
(i) Arc colorings
a
6
=
0
u
a
10
=
1
0
a
1
=
1
u
2
a
4
=
2u
21
u
20
+ ··· + 4u 1
u
20
+ 6u
18
+ ··· + 2u
2
+ 2u
a
2
=
2u
21
+ 13u
19
+ ··· + 4u 1
u
19
5u
17
+ ··· + 2u
2
+ u
a
7
=
u
u
3
+ u
a
8
=
u
3
u
3
+ u
a
5
=
u
3
u
5
u
3
+ u
a
3
=
2u
21
+ 12u
19
+ ··· + 3u 1
u
16
+ 4u
14
+ ··· + 2u
2
+ u
a
9
=
u
6
u
4
+ 1
u
6
2u
4
+ u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
21
+ 24u
19
+ 4u
18
64u
17
20u
16
+ 80u
15
+ 44u
14
20u
13
40u
12
72u
11
4u
10
+ 76u
9
+ 40u
8
8u
7
20u
6
28u
5
4u
4
+ 8u
3
+ 8u
2
10
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
6
c
10
u
22
u
21
+ ··· 4u
2
+ 1
c
2
, c
8
(u
11
u
10
+ 2u
9
u
8
+ 4u
7
2u
6
+ 4u
5
u
4
+ 3u
3
+ u
2
+ 1)
2
c
3
, c
5
u
22
+ 13u
21
+ ··· + 8u + 1
c
7
, c
9
(u
11
3u
10
+ ··· 2u + 1)
2
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
6
c
10
y
22
13y
21
+ ··· 8y + 1
c
2
, c
8
(y
11
+ 3y
10
+ ··· 2y 1)
2
c
3
, c
5
y
22
9y
21
+ ··· 32y + 1
c
7
, c
9
(y
11
+ 11y
10
+ ··· + 6y 1)
2
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.878994 + 0.515981I
a = 0.407883 + 0.148860I
b = 0.509746 0.200169I
1.89175 + 2.94672I 2.20063 4.11787I
u = 0.878994 0.515981I
a = 0.407883 0.148860I
b = 0.509746 + 0.200169I
1.89175 2.94672I 2.20063 + 4.11787I
u = 0.894378 + 0.268842I
a = 2.19177 0.42458I
b = 0.632662 + 0.861406I
2.98514 + 1.13130I 7.98780 6.05785I
u = 0.894378 0.268842I
a = 2.19177 + 0.42458I
b = 0.632662 0.861406I
2.98514 1.13130I 7.98780 + 6.05785I
u = 0.101435 + 0.877274I
a = 1.073150 0.632994I
b = 2.13072 0.20221I
4.72165 7.47524I 7.77092 + 5.55460I
u = 0.101435 0.877274I
a = 1.073150 + 0.632994I
b = 2.13072 + 0.20221I
4.72165 + 7.47524I 7.77092 5.55460I
u = 1.166330 + 0.116345I
a = 1.74332 0.35353I
b = 1.54944 + 0.26584I
2.98514 + 1.13130I 7.98780 6.05785I
u = 1.166330 0.116345I
a = 1.74332 + 0.35353I
b = 1.54944 0.26584I
2.98514 1.13130I 7.98780 + 6.05785I
u = 0.022883 + 0.808487I
a = 1.17422 0.82028I
b = 2.00647 + 0.07669I
5.26692 + 1.41699I 8.79131 0.63373I
u = 0.022883 0.808487I
a = 1.17422 + 0.82028I
b = 2.00647 0.07669I
5.26692 1.41699I 8.79131 + 0.63373I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.438226 + 0.645537I
a = 0.159128 0.544432I
b = 1.222780 0.483692I
1.89175 2.94672I 2.20063 + 4.11787I
u = 0.438226 0.645537I
a = 0.159128 + 0.544432I
b = 1.222780 + 0.483692I
1.89175 + 2.94672I 2.20063 4.11787I
u = 1.209200 + 0.415611I
a = 0.716733 + 0.554276I
b = 0.389956 + 0.626620I
5.26692 1.41699I 8.79131 + 0.63373I
u = 1.209200 0.415611I
a = 0.716733 0.554276I
b = 0.389956 0.626620I
5.26692 + 1.41699I 8.79131 0.63373I
u = 1.218830 + 0.447288I
a = 1.98611 0.66727I
b = 2.01763 + 1.70968I
8.93247 + 3.04152I 12.06121 2.82242I
u = 1.218830 0.447288I
a = 1.98611 + 0.66727I
b = 2.01763 1.70968I
8.93247 3.04152I 12.06121 + 2.82242I
u = 1.203210 + 0.491862I
a = 0.610676 + 0.586169I
b = 0.143972 + 0.552324I
4.72165 + 7.47524I 7.77092 5.55460I
u = 1.203210 0.491862I
a = 0.610676 0.586169I
b = 0.143972 0.552324I
4.72165 7.47524I 7.77092 + 5.55460I
u = 0.687015
a = 0.995334
b = 0.930026
1.09450 8.37630
u = 1.263030 + 0.401917I
a = 1.93778 0.67607I
b = 2.24577 + 1.44537I
8.93247 + 3.04152I 12.06121 2.82242I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.263030 0.401917I
a = 1.93778 + 0.67607I
b = 2.24577 1.44537I
8.93247 3.04152I 12.06121 + 2.82242I
u = 0.460239
a = 1.48577
b = 1.00173
1.09450 8.37630
12
III. I
u
3
= hb + 1, a + 2, u + 1i
(i) Arc colorings
a
6
=
0
1
a
10
=
1
0
a
1
=
1
1
a
4
=
2
1
a
2
=
1
0
a
7
=
1
0
a
8
=
1
0
a
5
=
1
1
a
3
=
1
0
a
9
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
5
c
6
u 1
c
2
, c
7
, c
8
c
9
u
c
4
, c
10
u + 1
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
c
5
, c
6
, c
10
y 1
c
2
, c
7
, c
8
c
9
y
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.00000
a = 2.00000
b = 1.00000
3.28987 12.0000
16
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
6
(u 1)(u
13
u
12
+ ··· 2u
2
+ 1)
· (u
22
u
21
+ ··· 4u
2
+ 1)
c
2
, c
8
u(u
11
u
10
+ 2u
9
u
8
+ 4u
7
2u
6
+ 4u
5
u
4
+ 3u
3
+ u
2
+ 1)
2
· (u
13
+ 3u
12
+ ··· + 4u + 2)
c
3
, c
5
(u 1)(u
13
+ 7u
12
+ ··· + 4u + 1)(u
22
+ 13u
21
+ ··· + 8u + 1)
c
4
, c
10
(u + 1)(u
13
u
12
+ ··· 2u
2
+ 1)
· (u
22
u
21
+ ··· 4u
2
+ 1)
c
7
, c
9
u(u
11
3u
10
+ ··· 2u + 1)
2
(u
13
3u
12
+ ··· + 4u + 4)
17
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
6
c
10
(y 1)(y
13
7y
12
+ ··· + 4y 1)(y
22
13y
21
+ ··· 8y + 1)
c
2
, c
8
y(y
11
+ 3y
10
+ ··· 2y 1)
2
(y
13
+ 3y
12
+ ··· + 4y 4)
c
3
, c
5
(y 1)(y
13
+ y
12
+ ··· + 8y 1)(y
22
9y
21
+ ··· 32y + 1)
c
7
, c
9
y(y
11
+ 11y
10
+ ··· + 6y 1)
2
(y
13
+ 11y
12
+ ··· + 104y 16)
18