10
126
(K10n
17
)
A knot diagram
1
Linearized knot diagam
4 8 5 2 9 10 5 2 6 7
Solving Sequence
5,9
6
2,10
4 1 3 8 7
c
5
c
9
c
4
c
1
c
3
c
8
c
7
c
2
, c
6
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−u
10
u
9
+ 5u
8
+ 3u
7
9u
6
+ u
5
+ 8u
4
6u
3
3u
2
+ b + u,
u
10
+ u
9
4u
8
3u
7
+ 4u
6
u
5
u
4
+ 4u
3
+ u
2
+ a + 3u + 1,
u
11
+ 2u
10
4u
9
8u
8
+ 6u
7
+ 7u
6
10u
5
+ u
4
+ 11u
3
+ 1i
I
u
2
= hb + 1, a, u
2
u 1i
* 2 irreducible components of dim
C
= 0, with total 13 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−u
10
u
9
+· · ·+b + u, u
10
+u
9
+· · ·+a + 1, u
11
+2u
10
+· · ·+11u
3
+1i
(i) Arc colorings
a
5
=
1
0
a
9
=
0
u
a
6
=
1
u
2
a
2
=
u
10
u
9
+ 4u
8
+ 3u
7
4u
6
+ u
5
+ u
4
4u
3
u
2
3u 1
u
10
+ u
9
5u
8
3u
7
+ 9u
6
u
5
8u
4
+ 6u
3
+ 3u
2
u
a
10
=
u
u
3
+ u
a
4
=
u
3
2u
u
10
+ u
9
4u
8
3u
7
+ 5u
6
u
5
4u
4
+ 5u
3
+ 3u
2
a
1
=
u
3
2u
u
5
+ 3u
3
u
a
3
=
u
10
+ u
9
4u
8
3u
7
+ 5u
6
u
5
4u
4
+ 6u
3
+ 3u
2
2u
u
10
+ u
9
4u
8
3u
7
+ 5u
6
u
5
4u
4
+ 5u
3
+ 3u
2
a
8
=
u
4
3u
2
+ 1
u
4
2u
2
a
7
=
u
2
+ 1
u
4
2u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
9
u
8
6u
7
+ 7u
6
+ 11u
5
17u
4
+ 2u
3
+ 16u
2
15u + 3
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
11
3u
10
+ ··· 7u + 1
c
2
, c
8
u
11
u
10
+ ··· 4u + 4
c
3
u
11
+ 15u
10
+ ··· + 51u + 1
c
5
, c
6
, c
9
c
10
u
11
2u
10
4u
9
+ 8u
8
+ 6u
7
7u
6
10u
5
u
4
+ 11u
3
1
c
7
u
11
+ 12u
9
+ 2u
8
+ 32u
7
+ 17u
6
28u
5
+ 27u
4
15u
3
+ 2u
2
2u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
11
15y
10
+ ··· + 51y 1
c
2
, c
8
y
11
+ 15y
10
+ ··· + 88y 16
c
3
y
11
35y
10
+ ··· + 1959y 1
c
5
, c
6
, c
9
c
10
y
11
12y
10
+ ··· 2y
2
1
c
7
y
11
+ 24y
10
+ ··· + 2y
2
1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.555784 + 0.826080I
a = 1.70442 + 0.91227I
b = 1.75765 0.08981I
11.41260 + 2.72618I 1.17921 2.48457I
u = 0.555784 0.826080I
a = 1.70442 0.91227I
b = 1.75765 + 0.08981I
11.41260 2.72618I 1.17921 + 2.48457I
u = 1.30287
a = 0.964097
b = 1.44606
1.42853 5.86840
u = 1.395180 + 0.126727I
a = 0.158907 + 0.922695I
b = 0.665578 0.815452I
3.45898 2.75386I 6.03924 + 3.05522I
u = 1.395180 0.126727I
a = 0.158907 0.922695I
b = 0.665578 + 0.815452I
3.45898 + 2.75386I 6.03924 3.05522I
u = 0.509387
a = 0.753099
b = 0.150577
0.764590 13.1750
u = 0.205266 + 0.391152I
a = 1.19521 1.33382I
b = 0.887105 + 0.326749I
1.67531 + 0.87131I 1.62556 2.85981I
u = 0.205266 0.391152I
a = 1.19521 + 1.33382I
b = 0.887105 0.326749I
1.67531 0.87131I 1.62556 + 2.85981I
u = 1.58287
a = 0.388562
b = 0.514377
8.06663 13.5530
u = 1.55405 + 0.30396I
a = 0.560911 1.017150I
b = 1.68559 + 0.26432I
4.54812 6.90426I 4.10911 + 3.24808I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.55405 0.30396I
a = 0.560911 + 1.017150I
b = 1.68559 0.26432I
4.54812 + 6.90426I 4.10911 3.24808I
6
II. I
u
2
= hb + 1, a, u
2
u 1i
(i) Arc colorings
a
5
=
1
0
a
9
=
0
u
a
6
=
1
u 1
a
2
=
0
1
a
10
=
u
u 1
a
4
=
1
1
a
1
=
1
0
a
3
=
0
1
a
8
=
0
u
a
7
=
u
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
(u 1)
2
c
2
, c
8
u
2
c
4
(u + 1)
2
c
5
, c
6
u
2
u 1
c
7
, c
9
, c
10
u
2
+ u 1
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
(y 1)
2
c
2
, c
8
y
2
c
5
, c
6
, c
7
c
9
, c
10
y
2
3y + 1
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.618034
a = 0
b = 1.00000
0.657974 3.00000
u = 1.61803
a = 0
b = 1.00000
7.23771 3.00000
10
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
2
)(u
11
3u
10
+ ··· 7u + 1)
c
2
, c
8
u
2
(u
11
u
10
+ ··· 4u + 4)
c
3
((u 1)
2
)(u
11
+ 15u
10
+ ··· + 51u + 1)
c
4
((u + 1)
2
)(u
11
3u
10
+ ··· 7u + 1)
c
5
, c
6
(u
2
u 1)(u
11
2u
10
+ ··· + 11u
3
1)
c
7
(u
2
+ u 1)
· (u
11
+ 12u
9
+ 2u
8
+ 32u
7
+ 17u
6
28u
5
+ 27u
4
15u
3
+ 2u
2
2u + 1)
c
9
, c
10
(u
2
+ u 1)(u
11
2u
10
+ ··· + 11u
3
1)
11
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
((y 1)
2
)(y
11
15y
10
+ ··· + 51y 1)
c
2
, c
8
y
2
(y
11
+ 15y
10
+ ··· + 88y 16)
c
3
((y 1)
2
)(y
11
35y
10
+ ··· + 1959y 1)
c
5
, c
6
, c
9
c
10
(y
2
3y + 1)(y
11
12y
10
+ ··· 2y
2
1)
c
7
(y
2
3y + 1)(y
11
+ 24y
10
+ ··· + 2y
2
1)
12