11n
19
(K11n
19
)
A knot diagram
1
Linearized knot diagam
5 1 9 2 3 10 11 1 3 7 8
Solving Sequence
1,8 3,9
4 2 5 11 7 10 6
c
8
c
3
c
2
c
4
c
11
c
7
c
10
c
6
c
1
, c
5
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= hu
5
+ u
4
3u
3
3u
2
+ 2b 3u 1, u
4
5u
2
+ 2a + 3, u
6
+ 3u
5
2u
4
11u
3
6u
2
u 1i
I
u
2
= hau + b + a, a
2
+ au a u + 2, u
2
u 1i
* 2 irreducible components of dim
C
= 0, with total 10 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
5
+ u
4
3u
3
3u
2
+ 2b 3u 1, u
4
5u
2
+ 2a + 3, u
6
+ 3u
5
2u
4
11u
3
6u
2
u 1i
(i) Arc colorings
a
1
=
0
u
a
8
=
1
0
a
3
=
1
2
u
4
+
5
2
u
2
3
2
1
2
u
5
1
2
u
4
+ ··· +
3
2
u +
1
2
a
9
=
1
u
2
a
4
=
u
5
3
2
u
4
+ 4u
3
+
11
2
u
2
u
3
2
7
2
u
5
+
7
2
u
4
+ ··· +
1
2
u
3
2
a
2
=
1
2
u
4
+
5
2
u
2
3
2
2u
5
2u
4
+ 7u
3
+ 6u
2
+ 2u + 1
a
5
=
1
2
u
4
+ u
3
3
2
u
2
4u
3
2
1
2
u
5
+
1
2
u
4
+ ··· +
1
2
u
1
2
a
11
=
u
u
a
7
=
u
2
+ 1
u
2
a
10
=
u
3
2u
u
3
+ u
a
6
=
u
4
3u
2
+ 1
u
4
+ 2u
2
a
6
=
u
4
3u
2
+ 1
u
4
+ 2u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes =
3
2
u
5
5u
4
+
7
2
u
3
+ 20u
2
+
15
2
u + 4
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
6
+ 3u
5
+ 4u
4
+ u
3
+ 3u + 1
c
2
u
6
u
5
+ 10u
4
17u
3
+ 2u
2
9u + 1
c
3
, c
9
u
6
+ 6u
5
+ 28u
4
+ 60u
3
+ 20u
2
16u 16
c
5
u
6
3u
5
+ 12u
4
+ 127u
3
+ 52u
2
+ 113u + 41
c
6
, c
7
, c
8
c
10
, c
11
u
6
3u
5
2u
4
+ 11u
3
6u
2
+ u 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
6
y
5
+ 10y
4
17y
3
+ 2y
2
9y + 1
c
2
y
6
+ 19y
5
+ 70y
4
265y
3
282y
2
77y + 1
c
3
, c
9
y
6
+ 20y
5
+ 104y
4
2320y
3
+ 1424y
2
896y + 256
c
5
y
6
+ 15y
5
+ 1010y
4
14121y
3
25014y
2
8505y + 1681
c
6
, c
7
, c
8
c
10
, c
11
y
6
13y
5
+ 58y
4
93y
3
+ 18y
2
+ 11y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.787648
a = 0.141467
b = 0.524726
1.36678 7.32050
u = 0.049860 + 0.377590I
a = 1.85932 + 0.09941I
b = 0.321306 + 0.548438I
0.088081 1.387970I 1.39961 + 3.44965I
u = 0.049860 0.377590I
a = 1.85932 0.09941I
b = 0.321306 0.548438I
0.088081 + 1.387970I 1.39961 3.44965I
u = 1.93055
a = 0.872199
b = 0.574576
11.1902 8.52400
u = 2.12131 + 0.18327I
a = 0.00604 + 1.52892I
b = 0.22835 2.85610I
11.30140 4.76989I 7.67813 + 1.77109I
u = 2.12131 0.18327I
a = 0.00604 1.52892I
b = 0.22835 + 2.85610I
11.30140 + 4.76989I 7.67813 1.77109I
5
II. I
u
2
= hau + b + a, a
2
+ au a u + 2, u
2
u 1i
(i) Arc colorings
a
1
=
0
u
a
8
=
1
0
a
3
=
a
au a
a
9
=
1
u 1
a
4
=
a
au a
a
2
=
a
2au 2a
a
5
=
a + u 1
au a 2u
a
11
=
u
u
a
7
=
u
u + 1
a
10
=
1
u 1
a
6
=
0
u
a
6
=
0
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3au + 2a + u + 4
6
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
(u
2
+ u + 1)
2
c
3
, c
9
u
4
c
4
(u
2
u + 1)
2
c
6
, c
7
, c
8
(u
2
u 1)
2
c
10
, c
11
(u
2
+ u 1)
2
7
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
5
(y
2
+ y + 1)
2
c
3
, c
9
y
4
c
6
, c
7
, c
8
c
10
, c
11
(y
2
3y + 1)
2
8
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.618034
a = 0.80902 + 1.40126I
b = 0.309017 0.535233I
0.98696 2.02988I 6.50000 + 5.40059I
u = 0.618034
a = 0.80902 1.40126I
b = 0.309017 + 0.535233I
0.98696 + 2.02988I 6.50000 5.40059I
u = 1.61803
a = 0.309017 + 0.535233I
b = 0.80902 1.40126I
8.88264 + 2.02988I 6.50000 1.52761I
u = 1.61803
a = 0.309017 0.535233I
b = 0.80902 + 1.40126I
8.88264 2.02988I 6.50000 + 1.52761I
9
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
2
+ u + 1)
2
(u
6
+ 3u
5
+ 4u
4
+ u
3
+ 3u + 1)
c
2
(u
2
+ u + 1)
2
(u
6
u
5
+ 10u
4
17u
3
+ 2u
2
9u + 1)
c
3
, c
9
u
4
(u
6
+ 6u
5
+ 28u
4
+ 60u
3
+ 20u
2
16u 16)
c
4
(u
2
u + 1)
2
(u
6
+ 3u
5
+ 4u
4
+ u
3
+ 3u + 1)
c
5
(u
2
+ u + 1)
2
(u
6
3u
5
+ 12u
4
+ 127u
3
+ 52u
2
+ 113u + 41)
c
6
, c
7
, c
8
(u
2
u 1)
2
(u
6
3u
5
2u
4
+ 11u
3
6u
2
+ u 1)
c
10
, c
11
(u
2
+ u 1)
2
(u
6
3u
5
2u
4
+ 11u
3
6u
2
+ u 1)
10
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
(y
2
+ y + 1)
2
(y
6
y
5
+ 10y
4
17y
3
+ 2y
2
9y + 1)
c
2
(y
2
+ y + 1)
2
(y
6
+ 19y
5
+ 70y
4
265y
3
282y
2
77y + 1)
c
3
, c
9
y
4
(y
6
+ 20y
5
+ 104y
4
2320y
3
+ 1424y
2
896y + 256)
c
5
(y
2
+ y + 1)
2
· (y
6
+ 15y
5
+ 1010y
4
14121y
3
25014y
2
8505y + 1681)
c
6
, c
7
, c
8
c
10
, c
11
(y
2
3y + 1)
2
(y
6
13y
5
+ 58y
4
93y
3
+ 18y
2
+ 11y + 1)
11