



Ideals for irreducible components² of X_{par}

 $I_1^u = \langle u+1 \rangle$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 1 representations.

 $^{^{1}}$ The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter). ²All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated

in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u+1 \rangle$$

(i) Arc colorings (1)

$$a_{1} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0\\-1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1\\-1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1\\-1 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes = -6

(iv) u-Polynomials at the component

Crossings		u-Polynomials at each crossing
c_1, c_2, c_3	u+1	

(\mathbf{v}) Riley Polynomials at the component

Crossings	Riley Pol	ynomials at each crossing
c_1, c_2, c_3	y-1	

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\mathrm{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000	-1.64493	-6.00000

II. u-Polynomials

Crossings	u-Polynomials at each crossing	
c_1, c_2, c_3	u + 1	

III. Riley Polynomials

Crossings		Riley Polynomials at each crossing	
c_1, c_2, c_3	y-1		