$12n_{0303}$ (K12n_{0303})

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{23} + u^{22} + \dots + b - 2u, -3u^{23} - 6u^{22} + \dots + 2a + 7, u^{26} + 3u^{25} + \dots - 9u^2 + 1 \rangle$$

$$I_2^u = \langle b, a^2 + au - u^2 - a + 2u - 1, u^3 - u^2 + 1 \rangle$$

* 2 irreducible components of $\dim_{\mathbb{C}}=0,$ with total 32 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^{2}}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I_1^u = \langle u^{23} + u^{22} + \dots + b - 2u, \ -3u^{23} - 6u^{22} + \dots + 2a + 7, \ u^{26} + 3u^{25} + \dots - 9u^2 + 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} \frac{3}{2}u^{23} + 3u^{22} + \dots - 4u - \frac{7}{2} \\ -u^{23} - u^{22} + \dots + 2u^{2} + 2u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{25} + \frac{7}{2}u^{24} + \dots - \frac{11}{2}u - 3 \\ -\frac{1}{2}u^{25} - \frac{3}{2}u^{24} + \dots + \frac{3}{2}u - \frac{1}{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{3} \\ u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} \frac{5}{2}u^{23} + 4u^{22} + \dots - 6u - \frac{7}{2} \\ -u^{23} - u^{22} + \dots + 2u^{2} + 2u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{7} - 2u^{5} + 2u^{3} - 2u \\ -u^{7} + u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} \frac{1}{2}u^{23} + u^{22} + \dots + 2u + \frac{1}{2} \\ -u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} \frac{1}{2}u^{24} - 2u^{22} + \dots - \frac{7}{2}u + 1 \\ -\frac{1}{2}u^{25} - \frac{3}{2}u^{24} + \dots + \frac{3}{2}u - \frac{1}{2} \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes $= -\frac{11}{2}u^{25} - 12u^{24} + \frac{1}{2}u^{23} + 30u^{22} - 13u^{21} - 105u^{20} - 42u^{19} + \frac{337}{2}u^{18} + 57u^{17} - 325u^{16} - 196u^{15} + 356u^{14} + 198u^{13} - \frac{979}{2}u^{12} - 283u^{11} + \frac{789}{2}u^{10} + \frac{353}{2}u^9 - \frac{809}{2}u^8 - \frac{297}{2}u^7 + 250u^6 + 41u^5 - 154u^4 - 16u^3 + \frac{149}{2}u^2 + 13u - \frac{33}{2}$

Crossings	u-Polynomials at each crossing
c_1, c_6	$u^{26} + 5u^{25} + \dots + 18u + 1$
c_{2}, c_{5}	$u^{26} + 3u^{25} + \dots - 9u^2 + 1$
<i>C</i> 3	$u^{26} - 3u^{25} + \dots + 6516u + 1009$
c_4, c_9	$u^{26} - u^{25} + \dots + 96u + 64$
c_7, c_8, c_{10} c_{11}	$u^{26} + 4u^{25} + \dots - 3u + 1$
C ₁₂	$u^{26} + 28u^{24} + \dots - 31u - 1$

(iv) u-Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_{1}, c_{6}	$y^{26} + 35y^{25} + \dots - 74y + 1$
c_2, c_5	$y^{26} - 5y^{25} + \dots - 18y + 1$
<i>C</i> ₃	$y^{26} + 95y^{25} + \dots - 36103574y + 1018081$
c_4, c_9	$y^{26} - 35y^{25} + \dots - 58368y + 4096$
c_7, c_8, c_{10} c_{11}	$y^{26} - 28y^{25} + \dots - 27y + 1$
c ₁₂	$y^{26} + 56y^{25} + \dots - 391y + 1$

(\mathbf{v}) Riley Polynomials at the component

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\mathrm{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.697878 + 0.750786I		
a = 0.950274 + 0.282069I	3.30312 - 1.30372I	-2.90180 + 1.28901I
b = -0.969430 + 0.478608I		
u = 0.697878 - 0.750786I		
a = 0.950274 - 0.282069I	3.30312 + 1.30372I	-2.90180 - 1.28901I
b = -0.969430 - 0.478608I		
u = -1.05556		
a = -1.13582	-6.55918	-13.9020
b = -1.20261		
u = -0.714104 + 0.530028I		
a = -0.308272 + 1.024340I	-7.39553 + 1.99902I	-12.68261 - 2.64464I
b = -0.222426 + 0.888370I		
u = -0.714104 - 0.530028I		
a = -0.308272 - 1.024340I	-7.39553 - 1.99902I	-12.68261 + 2.64464I
b = -0.222426 - 0.888370I		
u = 0.426539 + 0.776149I		
a = -1.244140 - 0.230526I	-1.37386 + 1.46827I	-7.40504 - 0.61110I
b = 1.405990 + 0.009237I		
u = 0.426539 - 0.776149I		
a = -1.244140 + 0.230526I	-1.37386 - 1.46827I	-7.40504 + 0.61110I
b = 1.405990 - 0.009237I		
u = 0.924653 + 0.644299I		
a = -0.192140 - 0.877647I	2.53585 - 3.91698I	-4.21369 + 6.80514I
b = 0.922849 + 0.070450I		
u = 0.924653 - 0.644299I		
a = -0.192140 + 0.877647I	2.53585 + 3.91698I	-4.21369 - 6.80514I
b = 0.922849 - 0.070450I		
u = 1.032140 + 0.523292I		
a = 0.16264 + 1.48931I	-3.36202 - 6.28703I	-10.76890 + 5.79025I
b = -1.372650 + 0.239227I		

Solutions to I_1^u	$\sqrt{-1}(\operatorname{vol}+\sqrt{-1}CS)$	Cusp shape
u = 1.032140 - 0.523292I		
a = 0.16264 - 1.48931I	-3.36202 + 6.28703I	-10.76890 - 5.79025I
b = -1.372650 - 0.239227I		
u = -0.826543		
a = 0.499620	-1.35750	-5.74160
b = 0.424946		
u = 0.904709 + 0.855635I		
a = -0.749040 + 0.396223I	0.45711 - 3.16518I	-10.09379 + 2.71963I
b = 0.015583 - 1.255880I		
u = 0.904709 - 0.855635I		
a = -0.749040 - 0.396223I	0.45711 + 3.16518I	-10.09379 - 2.71963I
b = 0.015583 + 1.255880I		
u = -0.874451 + 0.958708I		
a = -1.34597 + 0.77169I	6.92052 - 3.79217I	-7.74212 + 0.87029I
b = 1.85003 - 0.54896I		
u = -0.874451 - 0.958708I		
a = -1.34597 - 0.77169I	6.92052 + 3.79217I	-7.74212 - 0.87029I
b = 1.85003 + 0.54896I		
u = -0.932825 + 0.952507I		
a = 1.48560 - 0.97786I	13.70930 + 0.63054I	-5.09956 + 0.08472I
b = -2.02844 + 0.13031I		
u = -0.932825 - 0.952507I		
a = 1.48560 + 0.97786I	13.70930 - 0.63054I	-5.09956 - 0.08472I
b = -2.02844 - 0.13031I		
u = -1.007520 + 0.885407I		
a = 1.72924 - 1.22466I	6.48279 + 10.56660I	-8.37835 - 5.32202I
b = -1.78041 - 0.65102I		
u = -1.007520 - 0.885407I		
a = 1.72924 + 1.22466I	6.48279 - 10.56660I	-8.37835 + 5.32202I
b = -1.78041 + 0.65102I		

Solutions to I_1^u	$\sqrt{-1}(\operatorname{vol}+\sqrt{-1}CS)$	Cusp shape
u = -0.977518 + 0.926314I $a = -1.61355 + 1.11637I$	13.5604 + 6.2675I	-5.43427 - 4.61670I
b = 1.99598 + 0.29162I		
u = -0.977518 - 0.926314I		
a = -1.61355 - 1.11637I	13.5604 - 6.2675I	-5.43427 + 4.61670I
b = 1.99598 - 0.29162I		
u = 0.605940		
a = 3.65946	-9.68489	0.985630
b = -0.461168		
u = -0.507505 + 0.285828I		
a = 0.417815 - 0.8362711	-0.698170 + 0.9813661	-8.43360 - 6.867031
b = 0.046187 - 0.679181I		
u = -0.507505 - 0.2858281	0.000170 0.0010001	0.49960 + 6.067091
a = 0.417815 + 0.8362711	-0.698170 - 0.9813661	-8.43360 + 6.867031
b = 0.046187 + 0.679181I		
u = 0.332109	1 200 15	0.00470
a = -2.60819	-1.32945	-6.03470
b = 0.512315		

II.
$$I_2^u = \langle b, \ a^2 + au - u^2 - a + 2u - 1, \ u^3 - u^2 + 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u \\ -u^{2} + u + 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} a \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} au + 2a \\ u^{2}a - au - a \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{2} - 1 \\ -u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} a \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -au - 2a + u - 1 \\ -u^{2}a + au + a \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes $= -u^2a 3u^2 a + 8u 13$

)

Crossings	u-Polynomials at each crossing
c_{1}, c_{3}	$(u^3 - u^2 + 2u - 1)^2$
<i>c</i> ₂	$(u^3 + u^2 - 1)^2$
c_4, c_9	u^6
<i>C</i> ₅	$(u^3 - u^2 + 1)^2$
<i>c</i> ₆	$(u^3 + u^2 + 2u + 1)^2$
c_7, c_8	$(u^2 + u - 1)^3$
c_{10}, c_{11}, c_{12}	$(u^2 - u - 1)^3$

(iv) u-Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_6	$(y^3 + 3y^2 + 2y - 1)^2$
c_2, c_5	$(y^3 - y^2 + 2y - 1)^2$
c_4, c_9	y^6
c_7, c_8, c_{10} c_{11}, c_{12}	$(y^2 - 3y + 1)^3$

(\mathbf{v}) Riley Polynomials at the component

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\operatorname{vol}+\sqrt{-1}CS)$	Cusp shape
u = 0.877439 + 0.744862I		
a = 0.198308 - 1.205210I	-5.85852 - 2.82812I	-8.44207 + 3.24268I
b = 0		
u = 0.877439 + 0.744862I		
a = -0.075747 + 0.460350I	2.03717 - 2.82812I	-5.93195 + 1.57712I
b = 0		
u = 0.877439 - 0.744862I		
a = 0.198308 + 1.205210I	-5.85852 + 2.82812I	-8.44207 - 3.24268I
b = 0		
u = 0.877439 - 0.744862I		
a = -0.075747 - 0.460350I	2.03717 + 2.82812I	-5.93195 - 1.57712I
b = 0		
u = -0.754878		
a = -1.08457	-2.10041	-19.0460
b = 0		
u = -0.754878		
a = 2.83945	-9.99610	-25.2060
b = 0		

Crossings	u-Polynomials at each crossing
c_1	$((u^3 - u^2 + 2u - 1)^2)(u^{26} + 5u^{25} + \dots + 18u + 1)$
c_2	$((u^3 + u^2 - 1)^2)(u^{26} + 3u^{25} + \dots - 9u^2 + 1)$
<i>C</i> ₃	$((u^3 - u^2 + 2u - 1)^2)(u^{26} - 3u^{25} + \dots + 6516u + 1009)$
c_4, c_9	$u^6(u^{26} - u^{25} + \dots + 96u + 64)$
C5	$((u^3 - u^2 + 1)^2)(u^{26} + 3u^{25} + \dots - 9u^2 + 1)$
<i>c</i> ₆	$((u^3 + u^2 + 2u + 1)^2)(u^{26} + 5u^{25} + \dots + 18u + 1)$
c_7, c_8	$((u^2 + u - 1)^3)(u^{26} + 4u^{25} + \dots - 3u + 1)$
c_{10}, c_{11}	$((u^2 - u - 1)^3)(u^{26} + 4u^{25} + \dots - 3u + 1)$
c ₁₂	$((u^2 - u - 1)^3)(u^{26} + 28u^{24} + \dots - 31u - 1)$

III. u-Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_6	$((y^3 + 3y^2 + 2y - 1)^2)(y^{26} + 35y^{25} + \dots - 74y + 1)$
c_2, c_5	$((y^3 - y^2 + 2y - 1)^2)(y^{26} - 5y^{25} + \dots - 18y + 1)$
<i>C</i> ₃	$((y^3 + 3y^2 + 2y - 1)^2)(y^{26} + 95y^{25} + \dots - 3.61036 \times 10^7y + 1018081)$
c_4, c_9	$y^6(y^{26} - 35y^{25} + \dots - 58368y + 4096)$
c_7, c_8, c_{10} c_{11}	$((y^2 - 3y + 1)^3)(y^{26} - 28y^{25} + \dots - 27y + 1)$
c_{12}	$((y^2 - 3y + 1)^3)(y^{26} + 56y^{25} + \dots - 391y + 1)$

IV. Riley Polynomials