$12n_{0374}$ (K12n_{0374})

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -301149306547334u^{15} - 405785743495567u^{14} + \dots + 5460935417391053b - 2324129620964575, \\ & 2521976827730410u^{15} + 4134029936992622u^{14} + \dots + 5460935417391053a - 8351550389039156, \\ & u^{16} + 2u^{15} + \dots + u - 1 \rangle \\ I_2^u &= \langle u^9 + u^8 - 2u^7 + 2u^6 + 3u^5 - 6u^4 + 2u^2 + b - 2u - 1, \\ & u^{10} - 4u^8 + 2u^7 + 4u^6 - 6u^5 + u^4 + 4u^3 - u^2 + a - u + 1, \\ & u^{11} + u^{10} - 3u^9 + 5u^7 - 4u^6 - 4u^5 + 4u^4 + u^3 - 3u^2 + 1 \rangle \end{split}$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 27 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^{2}}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$\begin{matrix} \text{I.} \\ I_1^u = \langle -3.01 \times 10^{14} u^{15} - 4.06 \times 10^{14} u^{14} + \dots + 5.46 \times 10^{15} b - 2.32 \times 10^{15}, \ 2.52 \times 10^{15} u^{15} + 4.13 \times 10^{15} u^{14} + \dots + 5.46 \times 10^{15} a - 8.35 \times 10^{15}, \ u^{16} + 2u^{15} + \dots + u - 1 \rangle \end{matrix}$$

 $a_{6} =$ $a_{10} =$ $a_{11} =$ $\left(\begin{array}{c} -0.461821u^{15} - 0.757019u^{14} + \dots + 1.13267u + 1.52933 \\ 0.0551461u^{15} + 0.0743070u^{14} + \dots - 1.30799u + 0.425592 \end{array} \right)$ $a_3 =$ -u $u^3 + u$ $a_{7} =$ $\begin{pmatrix} -1.16646u^{15} - 2.14400u^{14} + \dots - 0.648553u + 1.23228 \\ 0.142447u^{15} + 0.241985u^{14} + \dots - 2.03492u + 0.447884 \end{pmatrix}$ $a_{8} =$ $\begin{pmatrix} -0.461821u^{15} - 0.757019u^{14} + \dots + 1.13267u + 1.52933 \\ (0.0215283u^{15} + 0.0644709u^{14} + \dots - 0.679549u + 0.258968) \end{pmatrix}$ $a_2 =$ $1.49486u^{15} + 2.51422u^{14} + \dots - 4.17011u - 0.263898$ -0.226698u^{15} - 0.0915071u^{14} + \dots + 4.12577u - 0.807954 $a_1 =$ $1.28737u^{15} + 2.32151u^{14} + \dots - 1.70682u - 1.04336$ -0.120918u^{15} - 0.177515u^{14} + \dots + 2.35537u - 0.188916 $a_{5} =$ $1.16646u^{15} + 2.14400u^{14} + \dots + 0.648553u - 1.23228$ $0.120918u^{15} - 0.177515u^{14} + \dots + 2.35537u - 0.188916$ $a_4 =$ $0.802633u^{15} + 1.98845u^{14} + \dots + 8.96383u - 3.11463$ $-0.352889u^{15} - 0.635726u^{14} + \dots + 0.487447u + 0.504102$ $a_9 =$ $1.38603u^{15} + 2.45156u^{14} + \dots - 2.59193u - 0.500660$ -0.149090u^{15} - 0.0711014u^{14} + \dots + 2.28378u - 0.416208 $a_{12} =$

(ii) Obstruction class = -1

(i) Arc colorings

(iii)	Cusp Shapes					
	9739656845787569 ,15	17595322506035493	,14	16486080638841760		93508315704564998
	$\frac{1}{5460935417391053}u$ –	5460935417391053	$\iota + \cdots +$	5460935417391053	<i>ι</i> —	5460935417391053

(iv) u-Polynomials	at the	component
-----	-----------------	--------	-----------

Crossings	u-Polynomials at each crossing
c_1	$u^{16} - 22u^{15} + \dots + 28u + 1$
c_2, c_5	$u^{16} + 4u^{15} + \dots - 2u - 1$
c_3, c_7	$u^{16} - 14u^{15} + \dots + 152u^2 - 32$
c_4, c_9	$u^{16} + u^{15} + \dots - 184u - 85$
c_{6}, c_{10}	$u^{16} - 2u^{15} + \dots - u - 1$
c_8, c_{11}	$u^{16} - 2u^{15} + \dots + 2u + 1$
c ₁₂	$u^{16} + 8u^{15} + \dots - 17328u - 2417$

Crossings	Riley Polynomials at each crossing
c_1	$y^{16} + 14y^{15} + \dots - 540y + 1$
c_2, c_5	$y^{16} + 22y^{15} + \dots - 28y + 1$
c_3, c_7	$y^{16} - 14y^{15} + \dots - 9728y + 1024$
c_4, c_9	$y^{16} + 15y^{15} + \dots - 36576y + 7225$
c_6, c_{10}	$y^{16} + 20y^{15} + \dots - 9y + 1$
c_8, c_{11}	$y^{16} + 10y^{15} + \dots - 14y + 1$
c ₁₂	$y^{16} + 38y^{15} + \dots - 113705856y + 5841889$

(\mathbf{v}) Riley Polynomials at the component

(vi) Complex Volumes and Cusp Shapes	
--------------------------------------	--

Solutions to I_1^u	$\sqrt{-1}(\operatorname{vol}+\sqrt{-1}CS)$	Cusp shape
u = 0.709961 + 0.302018I		
a = 0.067289 - 0.371265I	-2.10600 - 5.42693I	-16.6708 + 2.3025I
b = -1.56748 + 0.56103I		
u = 0.709961 - 0.302018I		
a = 0.067289 + 0.371265I	-2.10600 + 5.42693I	-16.6708 - 2.3025I
b = -1.56748 - 0.56103I		
u = -0.624053 + 0.414470I		
a = 0.036931 + 0.619361I	2.12989 + 2.00985I	-8.08247 - 3.69887I
b = -0.268149 + 0.147042I		
u = -0.624053 - 0.414470I		
a = 0.036931 - 0.619361I	2.12989 - 2.00985I	-8.08247 + 3.69887I
b = -0.268149 - 0.147042I		
u = -0.603403		
a = 0.346440	-5.59033	-13.4830
b = 1.97720		
u = 0.365789 + 0.462196I		
a = 0.36041 - 1.55398I	-0.228166 + 0.909617I	-12.89785 - 1.13498I
b = 0.667180 + 0.526239I		
u = 0.365789 - 0.462196I		
a = 0.36041 + 1.55398I	-0.228166 - 0.909617I	-12.89785 + 1.13498I
b = 0.667180 - 0.526239I		
u = -0.222804 + 0.369878I		
a = 1.57769 + 3.86659I	-8.61028 - 1.60803I	-19.3772 + 7.1837I
b = 0.82840 - 1.19204I		
u = -0.222804 - 0.369878I		
a = 1.57769 - 3.86659I	-8.61028 + 1.60803I	-19.3772 - 7.1837I
b = 0.82840 + 1.19204I		
u = 0.325252		
a = 0.778005	-0.534698	-18.5610
b = 0.326406		

Solutions to I_1^u	$\sqrt{-1}(\operatorname{vol}+\sqrt{-1}CS)$	Cusp shape
u = 1.14699 + 2.11502I		
a = 1.050490 + 0.062469I	5.95217 - 5.11511I	-14.9917 + 2.0744I
b = -5.41647 + 5.13168I		
u = 1.14699 - 2.11502I		
a = 1.050490 - 0.062469I	5.95217 + 5.11511I	-14.9917 - 2.0744I
b = -5.41647 - 5.13168I		
u = -0.86624 + 2.26332I		
a = -1.018240 + 0.164220I	10.23600 + 0.21137I	-11.36887 + 0.55661I
b = 6.83232 + 3.44115I		
u = -0.86624 - 2.26332I		
a = -1.018240 - 0.164220I	10.23600 - 0.21137I	-11.36887 - 0.55661I
b = 6.83232 - 3.44115I		
u = -1.37057 + 2.24654I		
a = -1.136800 + 0.049742I	9.6708 + 10.3555I	-12.00000 - 4.83541I
b = 5.77240 + 7.05674I		
$u = -\overline{1.37057 - 2.24654I}$		
a = -1.136800 - 0.049742I	9.6708 - 10.3555I	-12.00000 + 4.83541I
b = 5.77240 - 7.05674I		

$$\begin{array}{l} \text{II.} \\ I_2^u = \langle u^9 + u^8 + \dots + b - 1, \ u^{10} - 4u^8 + \dots + a + 1, \ u^{11} + u^{10} + \dots - 3u^2 + 1 \rangle \\ \text{(i) Arc colorings} \\ a_6 = \begin{pmatrix} 0 \\ u \\ \end{pmatrix} \\ a_{10} = \begin{pmatrix} 1 \\ 0 \\ \end{pmatrix} \\ a_{11} = \begin{pmatrix} 1 \\ u^2 \\ \end{pmatrix} \\ a_3 = \begin{pmatrix} -u^{10} + 4u^8 - 2u^7 - 4u^6 + 6u^5 - u^4 - 4u^3 + u^2 + u - 1 \\ -u^9 - u^8 + 2u^7 - 2u^6 - 3u^5 + 6u^4 - 2u^2 + 2u + 1 \end{pmatrix} \\ a_7 = \begin{pmatrix} -u \\ -u^3 + u \\ 2u^9 + 2u^8 - 5u^7 + 6u^5 - 6u^4 - 3u^3 + 2u^2 - u - 1 \end{pmatrix} \\ a_8 = \begin{pmatrix} -u^{00} + 4u^8 - 2u^7 - 4u^6 + 6u^5 - u^4 - 4u^3 + u^2 + u - 1 \\ -2u^9 - 2u^8 + 5u^7 - 4u^6 + 6u^5 - u^4 - 4u^3 + u^2 + u - 1 \\ a_2 = \begin{pmatrix} -u^{10} + 4u^8 - 2u^7 - 4u^6 + 6u^5 - u^4 - 4u^3 + u^2 + u - 1 \\ -2u^9 - 2u^8 + 5u^7 - u^6 - 7u^5 + 8u^4 + 3u^3 - 4u^2 + u + 2 \end{pmatrix} \\ a_1 = \begin{pmatrix} -2u^9 - 3u^8 + 4u^7 + 3u^6 - 4u^5 - 2u^4 - 2u^3 \\ -2u^9 - 3u^8 + 4u^7 + 3u^6 - 4u^5 - 2u^4 + u^3 + u^2 + u \end{pmatrix} \\ a_5 = \begin{pmatrix} u^9 + u^8 - 3u^7 - u^6 + 4u^5 - u^4 - 3u^3 + 2u \\ u^6 + u^5 - 2u^4 + 2u^2 - u - 1 \end{pmatrix} \\ a_4 = \begin{pmatrix} u^9 + u^8 - 3u^7 - 5u^5 - 3u^4 - 3u^3 + 2u^2 - u \\ u^6 + u^5 - 2u^4 + 2u^2 - u - 1 \end{pmatrix} \\ a_9 = \begin{pmatrix} u^8 + u^7 - 3u^6 - 2u^5 + 3u^4 - 3u^2 + 2 \\ -u^9 - u^8 + 2u^7 - 2u^5 + 2u^4 + u^2 + u \end{pmatrix} \\ a_{12} = \begin{pmatrix} -u^9 - u^8 + 2u^7 - 2u^5 + 2u^4 + u^2 + u \\ -u^9 - u^8 + 2u^7 - 2u^5 + 2u^4 + u^2 + u \end{pmatrix} \end{aligned}$$

(ii) Obstruction class = 1

(iii) Cusp Shapes = $4u^{10} + 10u^9 - 2u^8 - 14u^7 + 9u^6 + 15u^5 - 26u^4 - 23u^3 + 22u^2 - 2u - 29$ (iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{11} - 9u^{10} + \dots + 5u - 1$
<i>c</i> ₂	$u^{11} + 3u^{10} - 6u^8 - 2u^7 + 2u^6 + 3u^5 + 4u^4 + 2u^3 - 2u^2 - 3u - 1$
<i>C</i> 3	$u^{11} + 2u^{10} + \dots - 5u + 1$
<i>C</i> ₄	$u^{11} - 4u^9 - 6u^8 + 10u^7 + 23u^6 - 10u^5 - 23u^4 - 2u^3 + 16u^2 - 3u - 1$
C5	$u^{11} - 3u^{10} + 6u^8 - 2u^7 - 2u^6 + 3u^5 - 4u^4 + 2u^3 + 2u^2 - 3u + 1$
<i>c</i> ₆	$u^{11} - u^{10} - 3u^9 + 5u^7 + 4u^6 - 4u^5 - 4u^4 + u^3 + 3u^2 - 1$
C ₇	$u^{11} - 2u^{10} + \dots - 5u - 1$
C ₈	$u^{11} - 3u^{10} + \dots - u + 1$
<i>C</i> 9	$u^{11} - 4u^9 + 6u^8 + 10u^7 - 23u^6 - 10u^5 + 23u^4 - 2u^3 - 16u^2 - 3u + 1$
c_{10}	$u^{11} + u^{10} - 3u^9 + 5u^7 - 4u^6 - 4u^5 + 4u^4 + u^3 - 3u^2 + 1$
c ₁₁	$u^{11} + 3u^{10} + \dots - u - 1$
c_{12}	$u^{11} - 7u^{10} + \dots - 85u + 29$

Crossings	Riley Polynomials at each crossing
c_1	$y^{11} - 17y^{10} + \dots + 9y - 1$
c_2, c_5	$y^{11} - 9y^{10} + \dots + 5y - 1$
c_3, c_7	$y^{11} - 14y^{10} + \dots + 21y - 1$
c_4, c_9	$y^{11} - 8y^{10} + \dots + 41y - 1$
c_{6}, c_{10}	$y^{11} - 7y^{10} + \dots + 6y - 1$
c_8, c_{11}	$y^{11} + 7y^{10} + \dots + 3y - 1$
c ₁₂	$y^{11} - 21y^{10} + \dots + 10821y - 841$

(\mathbf{v}) Riley Polynomials at the component

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\mathrm{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.636123 + 0.670136I		
a = 1.114440 - 0.543604I	1.01561 - 3.68794I	-9.46045 + 4.33638I
b = -0.780678 + 0.831560I		
u = 0.636123 - 0.670136I		
a = 1.114440 + 0.543604I	1.01561 + 3.68794I	-9.46045 - 4.33638I
b = -0.780678 - 0.831560I		
u = 0.579598 + 0.909451I		
a = -0.53978 + 1.76442I	-8.26462 + 1.07707I	-11.60559 + 3.04504I
b = -1.78870 - 1.78170I		
u = 0.579598 - 0.909451I		
a = -0.53978 - 1.76442I	-8.26462 - 1.07707I	-11.60559 - 3.04504I
b = -1.78870 + 1.78170I		
u = 1.16659		
a = -0.621653	-8.04334	-20.3040
b = -1.35028		
u = -0.693012 + 0.407011I		
a = 0.911623 - 0.220211I	-1.97384 + 6.11246I	-15.4629 - 13.1582I
b = -2.23098 - 0.93364I		
u = -0.693012 - 0.407011I		
a = 0.911623 + 0.220211I	-1.97384 - 6.11246I	-15.4629 + 13.1582I
b = -2.23098 + 0.93364I		
u = -0.733849		
a = -1.28586	-2.65454	-14.9220
b = 0.269849		
u = 0.710299		
a = -0.858009	-6.08165	-31.1290
b = 2.21118		
u = -1.59423 + 0.15020I		
a = -0.103519 + 0.553154I	-5.41647 - 2.99510I	-12.79336 + 4.15050I
b = 0.73498 + 1.21716I		

Solutions to I_2^u	$\sqrt{-1}(\operatorname{vol}+\sqrt{-1}CS)$	Cusp shape
u = -1.59423 - 0.15020I		
a = -0.103519 - 0.553154I	-5.41647 + 2.99510I	-12.79336 - 4.15050I
b = 0.73498 - 1.21716I		

III. u-Polynomials			
Crossings	u-Polynomials at each crossing		
c_1	$(u^{11} - 9u^{10} + \dots + 5u - 1)(u^{16} - 22u^{15} + \dots + 28u + 1)$		
<i>C</i> ₂	$(u^{11} + 3u^{10} - 6u^8 - 2u^7 + 2u^6 + 3u^5 + 4u^4 + 2u^3 - 2u^2 - 3u - 1)$ $\cdot (u^{16} + 4u^{15} + \dots - 2u - 1)$		
c_3	$(u^{11} + 2u^{10} + \dots - 5u + 1)(u^{16} - 14u^{15} + \dots + 152u^2 - 32)$		
<i>c</i> ₄	$(u^{11} - 4u^9 - 6u^8 + 10u^7 + 23u^6 - 10u^5 - 23u^4 - 2u^3 + 16u^2 - 3u - 1)$ $\cdot (u^{16} + u^{15} + \dots - 184u - 85)$		
<i>C</i> 5	$(u^{11} - 3u^{10} + 6u^8 - 2u^7 - 2u^6 + 3u^5 - 4u^4 + 2u^3 + 2u^2 - 3u + 1)$ $\cdot (u^{16} + 4u^{15} + \dots - 2u - 1)$		
<i>c</i> ₆	$(u^{11} - u^{10} - 3u^9 + 5u^7 + 4u^6 - 4u^5 - 4u^4 + u^3 + 3u^2 - 1)$ $\cdot (u^{16} - 2u^{15} + \dots - u - 1)$		
C7	$(u^{11} - 2u^{10} + \dots - 5u - 1)(u^{16} - 14u^{15} + \dots + 152u^2 - 32)$		
<i>c</i> ₈	$(u^{11} - 3u^{10} + \dots - u + 1)(u^{16} - 2u^{15} + \dots + 2u + 1)$		
<i>C</i> 9	$(u^{11} - 4u^9 + 6u^8 + 10u^7 - 23u^6 - 10u^5 + 23u^4 - 2u^3 - 16u^2 - 3u + 1)$ $\cdot (u^{16} + u^{15} + \dots - 184u - 85)$		
<i>c</i> ₁₀	$(u^{11} + u^{10} - 3u^9 + 5u^7 - 4u^6 - 4u^5 + 4u^4 + u^3 - 3u^2 + 1)$ $\cdot (u^{16} - 2u^{15} + \dots - u - 1)$		
<i>c</i> ₁₁	$(u^{11} + 3u^{10} + \dots - u - 1)(u^{16} - 2u^{15} + \dots + 2u + 1)$		
C ₁₂	$(u^{11} - 7u^{10} + \dots - 85u + 29)(u^{16} + 8u^{15} + \dots - 17328u - 2417)$ 14		

Crossings	Riley Polynomials at each crossing
c_1	$(y^{11} - 17y^{10} + \dots + 9y - 1)(y^{16} + 14y^{15} + \dots - 540y + 1)$
c_2, c_5	$(y^{11} - 9y^{10} + \dots + 5y - 1)(y^{16} + 22y^{15} + \dots - 28y + 1)$
c_{3}, c_{7}	$(y^{11} - 14y^{10} + \dots + 21y - 1)(y^{16} - 14y^{15} + \dots - 9728y + 1024)$
c_4, c_9	$(y^{11} - 8y^{10} + \dots + 41y - 1)(y^{16} + 15y^{15} + \dots - 36576y + 7225)$
c_{6}, c_{10}	$(y^{11} - 7y^{10} + \dots + 6y - 1)(y^{16} + 20y^{15} + \dots - 9y + 1)$
c_8, c_{11}	$(y^{11} + 7y^{10} + \dots + 3y - 1)(y^{16} + 10y^{15} + \dots - 14y + 1)$
c ₁₂	$(y^{11} - 21y^{10} + \dots + 10821y - 841)$ $\cdot (y^{16} + 38y^{15} + \dots - 113705856y + 5841889)$

IV. Riley Polynomials