$12n_{0430}$ (K12n_{0430})

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle 5393u^{16} + 7516u^{15} + \dots + 113834b + 14038, \ -56628u^{16} + 74607u^{15} + \dots + 56917a + 70450, \\ u^{17} - 2u^{16} + \dots - 3u + 1 \rangle \\ I_2^u &= \langle 586u^{16} + 3093u^{15} + \dots + 176b + 851, \ 174u^{16} + 1095u^{15} + \dots + 88a + 969, \ u^{17} + 6u^{16} + \dots + 7u + 1 \rangle \end{split}$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 34 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^{2}}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle 5393u^{16} + 7516u^{15} + \dots + 113834b + 14038, -56628u^{16} + 74607u^{15} + \dots + 56917a + 70450, u^{17} - 2u^{16} + \dots - 3u + 1 \rangle$$

(i) Arc colorings

$$\begin{aligned} a_{10} &= \begin{pmatrix} 1\\ 0 \end{pmatrix} \\ a_{12} &= \begin{pmatrix} 0\\ u \end{pmatrix} \\ a_{5} &= \begin{pmatrix} 0.994922u^{16} - 1.31080u^{15} + \dots + 4.13788u - 1.23777 \\ -0.0473760u^{16} - 0.0660260u^{15} + \dots + 0.122169u - 0.123320 \end{pmatrix} \\ a_{9} &= \begin{pmatrix} 1\\ u^{2} \end{pmatrix} \\ a_{4} &= \begin{pmatrix} 0.477898u^{16} - 0.823497u^{15} + \dots + 3.21785u - 0.682046 \\ -0.443259u^{16} + 0.608096u^{15} + \dots - 1.00104u + 0.423424 \end{pmatrix} \\ a_{3} &= \begin{pmatrix} 0.921157u^{16} - 1.43159u^{15} + \dots + 4.21889u - 1.10547 \\ -0.443259u^{16} + 0.608096u^{15} + \dots - 1.00104u + 0.423424 \end{pmatrix} \\ a_{2} &= \begin{pmatrix} 0.328742u^{16} - 1.22857u^{15} + \dots + 1.60377u + 0.623056 \\ -u^{2} \end{pmatrix} \\ a_{8} &= \begin{pmatrix} 0.328742u^{16} - 1.22857u^{15} + \dots + 1.16794u - 1.55584 \\ -0.0276279u^{16} + 0.220628u^{15} + \dots - 0.602685u + 0.647443 \end{pmatrix} \\ a_{1} &= \begin{pmatrix} -0.112286u^{16} + 0.00399705u^{15} + \dots + 0.452817u + 0.188204 \\ 0.290282u^{16} - 0.397597u^{15} + \dots + 0.452817u + 0.188204 \end{pmatrix} \\ a_{7} &= \begin{pmatrix} -2.03864u^{16} + 3.21241u^{15} + \dots - 6.13918u + 2.03644 \\ 0.405714u^{16} - 0.285214u^{15} + \dots + 0.00505121u + 0.301114 \end{pmatrix} \\ a_{6} &= \begin{pmatrix} -1.63293u^{16} + 2.92770u^{15} + \dots - 6.13413u + 2.33755 \\ 0.405714u^{16} - 0.285214u^{15} + \dots - 0.00505121u + 0.301114 \end{pmatrix} \\ a_{11} &= \begin{pmatrix} -1.71543u^{16} + 2.52797u^{15} + \dots - 3.79178u + 2.31009 \\ -0.0167876u^{16} + 0.211167u^{15} + \dots - 0.0891034u + 0.108351 \end{pmatrix} \end{aligned}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes $= -\frac{49715}{8131}u^{16} + \frac{80546}{8131}u^{15} + \dots - \frac{140656}{8131}u + \frac{65802}{8131}u^{15}$

(iv) u-Polynomials	at the	component
-----	-----------------	--------	-----------

Crossings	u-Polynomials at each crossing
<i>c</i> ₁	$u^{17} + 31u^{16} + \dots - 143264u - 13456$
c_{2}, c_{5}	$u^{17} + 5u^{16} + \dots + 324u - 116$
<i>c</i> ₃	$u^{17} - 8u^{15} + \dots - 353u - 89$
c_4, c_8	$u^{17} + 14u^{15} + \dots + 664u - 161$
c_6, c_{10}	$u^{17} - 13u^{15} + \dots + 491u - 113$
c_7	$u^{17} + 3u^{16} + \dots - 2u - 1$
<i>C</i> 9	$u^{17} + 2u^{16} + \dots - 3u - 1$
c ₁₁	$u^{17} - 2u^{16} + \dots - 7040u - 5641$
c ₁₂	$u^{17} - 4u^{16} + \dots + 54780u - 10369$

Crossings	Riley Polynomials at each crossing
<i>c</i> ₁	$y^{17} + 11y^{16} + \dots + 7175468160y - 181063936$
c_2, c_5	$y^{17} + 31y^{16} + \dots - 143264y - 13456$
c ₃	$y^{17} - 16y^{16} + \dots + 32227y - 7921$
c_4, c_8	$y^{17} + 28y^{16} + \dots + 580966y - 25921$
c_6, c_{10}	$y^{17} - 26y^{16} + \dots + 68417y - 12769$
<i>C</i> ₇	$y^{17} + 31y^{16} + \dots - 2y - 1$
<i>C</i> 9	$y^{17} + 2y^{16} + \dots + y - 1$
<i>c</i> ₁₁	$y^{17} - 28y^{16} + \dots + 15817138y - 31820881$
c_{12}	$y^{17} + 40y^{16} + \dots - 105102598y - 107516161$

(\mathbf{v}) Riley Polynomials at the component

(vi) Complex Volumes and Cusp Shapes	
--------------------------------------	--

Solutions to I_1^u	$\left \sqrt{-1} (\operatorname{vol} + \sqrt{-1}CS) \right $	Cusp shape
u = 0.362254 + 0.899149I		
a = 0.508122 - 0.988405I	-7.23529 - 1.23787I	0.881318 - 0.776121I
b = -0.494404 + 0.009659I		
u = 0.362254 - 0.899149I		
a = 0.508122 + 0.988405I	-7.23529 + 1.23787I	0.881318 + 0.776121I
b = -0.494404 - 0.009659I		
u = 0.521342 + 0.748526I		
a = -0.957661 - 0.986783I	-6.57952 + 4.86431I	-3.62543 - 7.86944I
b = 0.120151 + 0.418864I		
u = 0.521342 - 0.748526I		
a = -0.957661 + 0.986783I	-6.57952 - 4.86431I	-3.62543 + 7.86944I
b = 0.120151 - 0.418864I		
u = -0.179836 + 0.612795I		
a = 0.209052 + 0.316220I	-0.94259 - 1.35597I	-2.95073 + 4.86153I
b = 0.642189 + 0.262178I		
u = -0.179836 - 0.612795I		
a = 0.209052 - 0.316220I	-0.94259 + 1.35597I	-2.95073 - 4.86153I
b = 0.642189 - 0.262178I		
u = -0.608474		
a = -1.54897	1.24807	10.3340
b = -0.776291		
u = -1.103650 + 0.854632I		
a = -0.354799 + 1.315260I	2.93182 - 3.02594I	2.01363 + 1.83200I
b = 1.46583 - 0.63451I		
u = -1.103650 - 0.854632I		
a = -0.354799 - 1.315260I	2.93182 + 3.02594I	2.01363 - 1.83200I
b = 1.46583 + 0.63451I		
u = -0.86904 + 1.16197I		
a = 1.202500 - 0.252987I	1.82701 - 4.29273I	1.50320 + 2.40550I
b = -1.63818 - 0.34892I		

Solutions to I_1^u	$\left \sqrt{-1} (\operatorname{vol} + \sqrt{-1}CS) \right $	Cusp shape
u = -0.86904 - 1.16197I		
a = 1.202500 + 0.252987I	1.82701 + 4.29273I	1.50320 - 2.40550I
b = -1.63818 + 0.34892I		
u = 1.00617 + 1.09412I		
a = 0.91587 + 1.51470I	17.3067 + 11.4081I	1.65806 - 4.29006I
b = -2.31303 - 0.28490I		
u = 1.00617 - 1.09412I		
a = 0.91587 - 1.51470I	17.3067 - 11.4081I	1.65806 + 4.29006I
b = -2.31303 + 0.28490I		
u = 1.11198 + 0.98896I		
a = -0.990744 - 0.722226I	17.7203 - 3.6735I	1.99465 + 0.48580I
b = 2.32313 - 0.15197I		
u = 1.11198 - 0.98896I		
a = -0.990744 + 0.722226I	17.7203 + 3.6735I	1.99465 - 0.48580I
b = 2.32313 + 0.15197I		
u = 0.455022 + 0.222930I		
a = 0.24214 + 2.49180I	0.66649 + 1.83609I	2.85826 - 4.77361I
b = -0.217538 - 0.475765I		
u = 0.455022 - 0.222930I		
a = 0.24214 - 2.49180I	0.66649 - 1.83609I	2.85826 + 4.77361I
b = -0.217538 + 0.475765I		

II. $I_2^u = \langle 586u^{16} + 3093u^{15} + \dots + 176b + 851, \ 174u^{16} + 1095u^{15} + \dots + 88a + 969, \ u^{17} + 6u^{16} + \dots + 7u + 1 \rangle$

(i) Arc colorings

$$\begin{aligned} a_{10} &= \begin{pmatrix} 1\\ 0 \end{pmatrix} \\ a_{12} &= \begin{pmatrix} 0\\ u \end{pmatrix} \\ a_{5} &= \begin{pmatrix} -1.97727u^{16} - 12.4432u^{15} + \dots - 40.8977u - 11.0114 \\ -3.32955u^{16} - 17.5739u^{15} + \dots - 22.4830u - 4.83523 \end{pmatrix} \\ a_{9} &= \begin{pmatrix} 1\\ u^{2} \end{pmatrix} \\ a_{4} &= \begin{pmatrix} -5.89773u^{16} - 33.6193u^{15} + \dots - 69.4148u - 16.4261 \\ -4.01136u^{16} - 22.0909u^{15} + \dots - 34.9886u - 7.18182 \end{pmatrix} \\ a_{3} &= \begin{pmatrix} -1.88636u^{16} - 11.5284u^{15} + \dots - 34.4261u - 9.24432 \\ -4.01136u^{16} - 22.0909u^{15} + \dots - 34.9886u - 7.18182 \end{pmatrix} \\ a_{2} &= \begin{pmatrix} -6.55114u^{16} - 36.0341u^{15} + \dots - 48.8239u - 7.19318 \\ -u^{2} \end{pmatrix} \\ a_{8} &= \begin{pmatrix} 0.801136u^{16} + 5.65909u^{15} + \dots + 7.44886u - 1.43182 \\ -2.50568u^{16} - 14.9830u^{15} + \dots - 33.8068u - 7.65341 \end{pmatrix} \\ a_{1} &= \begin{pmatrix} -5.09659u^{16} - 27.8977u^{15} + \dots - 40.7784u - 8.42045 \\ 3.01136u^{16} + 16.0909u^{15} + \dots + 14.9886u + 0.181818 \end{pmatrix} \\ a_{7} &= \begin{pmatrix} -3.06818u^{16} - 15.2330u^{15} + \dots - 2.84659u - 1.70455 \\ -0.903409u^{16} - 3.97727u^{15} + \dots - 2.84659u - 1.70455 \end{pmatrix} \\ a_{6} &= \begin{pmatrix} -3.97159u^{16} - 19.2102u^{15} + \dots - 12.8409u - 4.60795 \\ -0.903409u^{16} - 3.97727u^{15} + \dots - 2.84659u - 1.70455 \end{pmatrix} \\ a_{11} &= \begin{pmatrix} 6.00568u^{16} + 32.2955u^{15} + \dots + 7.35795u + 3.08523 \end{pmatrix} \end{aligned}$$

(ii) Obstruction class = 1

(iii) Cusp Shapes $= \frac{71}{88}u^{16} + \frac{87}{22}u^{15} + \dots - \frac{27}{88}u - \frac{13}{22}u^{15}$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{17} - 15u^{16} + \dots - 144u + 16$
<i>c</i> ₂	$u^{17} + 3u^{16} + \dots + 8u + 4$
<i>C</i> 3	$u^{17} + 2u^{15} + \dots - u - 1$
c_4	$u^{17} + 6u^{15} + \dots + 2u - 1$
<i>C</i> ₅	$u^{17} - 3u^{16} + \dots + 8u - 4$
<i>c</i> ₆	$u^{17} - 2u^{16} + \dots + 3u - 1$
<i>C</i> ₇	$u^{17} + u^{16} + \dots + 2u + 1$
<i>c</i> ₈	$u^{17} + 6u^{15} + \dots + 2u + 1$
<i>C</i> 9	$u^{17} + 6u^{16} + \dots + 7u + 1$
c_{10}	$u^{17} + 2u^{16} + \dots + 3u + 1$
<i>c</i> ₁₁	$u^{17} - 6u^{15} + \dots - 2u + 1$
c ₁₂	$u^{17} + 2u^{16} + \dots - 6u + 1$
	9

Crossings	Riley Polynomials at each crossing
c_1	$y^{17} - 21y^{16} + \dots + 896y - 256$
c_2, c_5	$y^{17} + 15y^{16} + \dots - 144y - 16$
C3	$y^{17} + 4y^{16} + \dots + 7y - 1$
c_4, c_8	$y^{17} + 12y^{16} + \dots - 14y - 1$
c_{6}, c_{10}	$y^{17} - 6y^{16} + \dots - 3y - 1$
<i>C</i> ₇	$y^{17} + 31y^{16} + \dots + 46y - 1$
<i>C</i> 9	$y^{17} + 2y^{16} + \dots + 9y - 1$
c ₁₁	$y^{17} - 12y^{16} + \dots - 22y - 1$
<i>c</i> ₁₂	$y^{17} + 8y^{16} + \dots + 30y - 1$

(\mathbf{v}) Riley Polynomials at the component

(vi)	Complex	Volumes	and	Cusp	Shapes	

Solutions to I_2^u	$\sqrt{-1}(\operatorname{vol}+\sqrt{-1}CS)$	Cusp shape
u = -0.663834 + 0.651775I		
a = 0.943799 - 0.890365I	1.273240 - 0.057282I	2.81611 - 0.19040I
b = -1.067980 - 0.354608I		
u = -0.663834 - 0.651775I		
a = 0.943799 + 0.890365I	1.273240 + 0.057282I	2.81611 + 0.19040I
b = -1.067980 + 0.354608I		
u = 0.833502 + 0.399060I		
a = -0.031669 + 0.929376I	-2.84392 + 1.35053I	2.24307 - 2.14121I
b = -0.809508 - 0.849987I		
u = 0.833502 - 0.399060I		
a = -0.031669 - 0.929376I	-2.84392 - 1.35053I	2.24307 + 2.14121I
b = -0.809508 + 0.849987I		
u = 0.532887 + 0.962901I		
a = -1.44876 - 0.06054I	-4.72942 + 3.29248I	0.14195 - 3.24278I
b = 0.748089 - 0.622928I		
u = 0.532887 - 0.962901I		
a = -1.44876 + 0.06054I	-4.72942 - 3.29248I	0.14195 + 3.24278I
b = 0.748089 + 0.622928I		
u = -0.042338 + 0.877922I		
a = -0.23026 - 1.50709I	-8.17306 + 1.94502I	-5.85947 - 3.89574I
b = 0.611186 + 0.415473I		
u = -0.042338 - 0.877922I		
a = -0.23026 + 1.50709I	-8.17306 - 1.94502I	-5.85947 + 3.89574I
b = 0.611186 - 0.415473I		
u = -0.660026 + 1.092400I		
a = -0.184327 + 0.822457I	-0.14701 - 5.07773I	-2.20879 + 6.02432I
b = 1.27739 - 0.92461I		
u = -0.660026 - 1.092400I		
a = -0.184327 - 0.822457I	-0.14701 + 5.07773I	-2.20879 - 6.02432I
b = 1.27739 + 0.92461I		

Solutions to I_2^u	$\sqrt{-1}(\operatorname{vol}+\sqrt{-1}CS)$	Cusp shape
u = -0.559508 + 0.431950I		
a = 0.51799 - 1.76316I	-6.21673 - 4.10194I	1.014362 - 0.459850I
b = 0.215995 + 0.599967I		
u = -0.559508 - 0.431950I		
a = 0.51799 + 1.76316I	-6.21673 + 4.10194I	1.014362 + 0.459850I
b = 0.215995 - 0.599967I		
u = -1.20705 + 0.84824I		
a = -0.473403 + 1.265630I	4.35554 - 2.89495I	10.74646 + 0.70267I
b = 1.95203 + 0.61047I		
u = -1.20705 - 0.84824I		
a = -0.473403 - 1.265630I	4.35554 + 2.89495I	10.74646 - 0.70267I
b = 1.95203 - 0.61047I		
u = -1.07765 + 1.20640I		
a = 0.558261 - 1.009500I	3.26824 - 5.33607I	6.67246 + 8.79937I
b = -2.68997 + 0.21065I		
u = -1.07765 - 1.20640I		
a = 0.558261 + 1.009500I	3.26824 + 5.33607I	6.67246 - 8.79937I
b = -2.68997 - 0.21065I		
u = -0.311963		
a = -3.30327	0.107313	-0.132300
b = -1.47445		

III. u-Polynomials		
Crossings	u-Polynomials at each crossing	
c_1	$(u^{17} - 15u^{16} + \dots - 144u + 16)$ $\cdot (u^{17} + 31u^{16} + \dots - 143264u - 13456)$	
<i>C</i> ₂	$(u^{17} + 3u^{16} + \dots + 8u + 4)(u^{17} + 5u^{16} + \dots + 324u - 116)$	
<i>c</i> ₃	$(u^{17} - 8u^{15} + \dots - 353u - 89)(u^{17} + 2u^{15} + \dots - u - 1)$	
C4	$(u^{17} + 6u^{15} + \dots + 2u - 1)(u^{17} + 14u^{15} + \dots + 664u - 161)$	
c_5	$(u^{17} - 3u^{16} + \dots + 8u - 4)(u^{17} + 5u^{16} + \dots + 324u - 116)$	
<i>c</i> ₆	$(u^{17} - 13u^{15} + \dots + 491u - 113)(u^{17} - 2u^{16} + \dots + 3u - 1)$	
<i>C</i> 7	$(u^{17} + u^{16} + \dots + 2u + 1)(u^{17} + 3u^{16} + \dots - 2u - 1)$	
<i>C</i> ₈	$(u^{17} + 6u^{15} + \dots + 2u + 1)(u^{17} + 14u^{15} + \dots + 664u - 161)$	
<i>C</i> 9	$(u^{17} + 2u^{16} + \dots - 3u - 1)(u^{17} + 6u^{16} + \dots + 7u + 1)$	
<i>c</i> ₁₀	$(u^{17} - 13u^{15} + \dots + 491u - 113)(u^{17} + 2u^{16} + \dots + 3u + 1)$	
<i>c</i> ₁₁	$(u^{17} - 6u^{15} + \dots - 2u + 1)(u^{17} - 2u^{16} + \dots - 7040u - 5641)$	
c_{12}	$(u^{17} - 4u^{16} + \dots + 54780u - 10369)(u^{17} + 2u^{16} + \dots - 6u + 1)$ 14	

Crossings	Riley Polynomials at each crossing
c_1	$(y^{17} - 21y^{16} + \dots + 896y - 256)$ $\cdot (y^{17} + 11y^{16} + \dots + 7175468160y - 181063936)$
c_2, c_5	$(y^{17} + 15y^{16} + \dots - 144y - 16)$ $\cdot (y^{17} + 31y^{16} + \dots - 143264y - 13456)$
<i>C</i> 3	$(y^{17} - 16y^{16} + \dots + 32227y - 7921)(y^{17} + 4y^{16} + \dots + 7y - 1)$
c_4, c_8	$(y^{17} + 12y^{16} + \dots - 14y - 1)(y^{17} + 28y^{16} + \dots + 580966y - 25921)$
c_6, c_{10}	$(y^{17} - 26y^{16} + \dots + 68417y - 12769)(y^{17} - 6y^{16} + \dots - 3y - 1)$
c_7	$(y^{17} + 31y^{16} + \dots + 46y - 1)(y^{17} + 31y^{16} + \dots - 2y - 1)$
<i>C</i> 9	$(y^{17} + 2y^{16} + \dots + 9y - 1)(y^{17} + 2y^{16} + \dots + y - 1)$
c ₁₁	$(y^{17} - 28y^{16} + \dots + 15817138y - 31820881)$ $\cdot (y^{17} - 12y^{16} + \dots - 22y - 1)$
C ₁₂	$(y^{17} + 8y^{16} + \dots + 30y - 1)$ $\cdot (y^{17} + 40y^{16} + \dots - 105102598y - 107516161)$

IV. Riley Polynomials