$12n_{0594}$ (K12n_{0594})

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -4u^{19} - 11u^{18} + \dots + b - 6, \ -2u^{19} - 3u^{18} + \dots + a - 7, \ u^{20} + 3u^{19} + \dots + 3u + 1 \rangle \\ I_2^u &= \langle -2u^{13} + 8u^{12} + \dots + b + 3, \\ &- u^{13} + 2u^{12} - 6u^{11} + 7u^{10} - 10u^9 + 8u^8 - 4u^7 + 4u^6 + 3u^5 + 2u^4 + 2u^3 - 2u^2 + a - 2, \\ &u^{14} - 4u^{13} + 13u^{12} - 28u^{11} + 50u^{10} - 72u^9 + 86u^8 - 89u^7 + 76u^6 - 59u^5 + 39u^4 - 23u^3 + 12u^2 - 4u + 1 \rangle \end{split}$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 34 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^{2}}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -4u^{19} - 11u^{18} + \dots + b - 6, -2u^{19} - 3u^{18} + \dots + a - 7, u^{20} + 3u^{19} + \dots + 3u + 1 \rangle$$

(i) Arc colorings

$$a_{8} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0\\u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1\\u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u\\u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 2u^{19} + 3u^{18} + \dots - u + 7\\4u^{19} + 11u^{18} + \dots + 5u + 6 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 6u^{19} + 14u^{18} + \dots + 4u + 13\\4u^{19} + 11u^{18} + \dots + 5u + 6 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{19} - u^{18} + \dots - u + 1\\-u^{19} - 4u^{18} + \dots - 4u - 2 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u\\u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 3u^{19} + 7u^{18} + \dots + 4u + 12\\4u^{19} + 10u^{18} + \dots + 2u + 3 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{19} + u^{18} + \dots + 2u + 1\\u^{19} + 4u^{18} + \dots + 4u + 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -2u^{19} - 2u^{18} + \dots + 3u - 6\\-4u^{19} - 12u^{18} + \dots - 5u - 6 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{18} + 2u^{17} + \dots + 2u + 1\\-u^{19} - 3u^{18} + \dots - 2u - 1 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes = $20u^{19} + 55u^{18} + 219u^{17} + 423u^{16} + 917u^{15} + 1354u^{14} + 1901u^{13} + 2075u^{12} + 1606u^{11} + 752u^{10} - 1039u^9 - 2337u^8 - 3525u^7 - 3656u^6 - 2870u^5 - 1973u^4 - 773u^3 - 277u^2 + 20u + 23$

(iv) u-Polynomials	at the	component
-----	-----------------	--------	-----------

Crossings	u-Polynomials at each crossing
<i>c</i> ₁	$u^{20} + 10u^{19} + \dots + 29696u + 4096$
c_2, c_6	$u^{20} - 16u^{19} + \dots + 224u - 64$
<i>c</i> ₃	$u^{20} + 2u^{19} + \dots - 135u - 31$
c_4, c_7	$u^{20} - 4u^{19} + \dots + u - 1$
c_5, c_9, c_{10}	$u^{20} - u^{19} + \dots - 3u - 1$
c_8, c_{11}, c_{12}	$u^{20} - 3u^{19} + \dots - 3u + 1$

Crossings	Riley Polynomials at each crossing
c_1	$y^{20} + 102y^{19} + \dots - 1112539136y + 16777216$
c_2, c_6	$y^{20} - 10y^{19} + \dots - 29696y + 4096$
<i>c</i> ₃	$y^{20} + 44y^{19} + \dots - 12831y + 961$
c_4, c_7	$y^{20} + 42y^{19} + \dots - 29y + 1$
c_5, c_9, c_{10}	$y^{20} + 49y^{19} + \dots + 9y + 1$
c_8, c_{11}, c_{12}	$y^{20} + 15y^{19} + \dots - 21y + 1$

(\mathbf{v}) Riley Polynomials at the component

(vi)	Complex	Volumes	and	Cusp	Shapes	

Solutions to I_1^u	$\sqrt{-1}(\operatorname{vol}+\sqrt{-1}CS)$	Cusp shape
u = -1.042660 + 0.036790I		
a = -0.041706 - 0.146779I	15.4500 + 5.4797I	-10.60978 - 2.00835I
b = -1.09913 + 2.60338I		
u = -1.042660 - 0.036790I		
a = -0.041706 + 0.146779I	15.4500 - 5.4797I	-10.60978 + 2.00835I
b = -1.09913 - 2.60338I		
u = 1.08731		
a = 0.282292	-5.86045	-4.92500
b = -0.147050		
u = -0.176041 + 0.850242I		
a = -0.272973 + 1.045810I	-0.414648 + 1.016570I	-12.17893 - 0.72142I
b = 0.746840 - 0.265541I		
u = -0.176041 - 0.850242I		
a = -0.272973 - 1.045810I	-0.414648 - 1.016570I	-12.17893 + 0.72142I
b = 0.746840 + 0.265541I		
u = 0.222003 + 1.123880I		
a = -0.155980 - 0.668566I	2.27216 - 2.01728I	-6.94050 + 3.50947I
b = -0.185769 + 0.435768I		
u = 0.222003 - 1.123880I		
a = -0.155980 + 0.668566I	2.27216 + 2.01728I	-6.94050 - 3.50947I
b = -0.185769 - 0.435768I		
u = -0.153005 + 1.219290I		
a = 0.53928 + 1.84965I	5.80153 + 4.79888I	-3.91055 - 4.91239I
b = 0.69118 - 1.43719I		
u = -0.153005 - 1.219290I		
a = 0.53928 - 1.84965I	5.80153 - 4.79888I	-3.91055 + 4.91239I
b = 0.69118 + 1.43719I		
u = -0.112420 + 1.234960I		
a = -0.73519 - 1.51536I	6.14605 - 0.99742I	-6.22294 + 0.30113I
b = -0.356045 + 1.326390I		

Solutions to I_1^u	$\sqrt{-1}(\operatorname{vol}+\sqrt{-1}CS)$	Cusp shape
u = -0.112420 - 1.234960I		
a = -0.73519 + 1.51536I	6.14605 + 0.99742I	-6.22294 - 0.30113I
b = -0.356045 - 1.326390I		
u = 0.538721 + 1.305800I		
a = 0.121911 + 0.351718I	-1.83437 - 5.75000I	-9.64448 - 0.35618I
b = 0.036915 - 0.257923I		
u = 0.538721 - 1.305800I		
a = 0.121911 - 0.351718I	-1.83437 + 5.75000I	-9.64448 + 0.35618I
b = 0.036915 + 0.257923I		
u = -0.54565 + 1.32924I		
a = 2.33430 + 1.17622I	19.4483 + 0.1620I	-7.85194 - 0.70320I
b = -1.00453 - 2.47780I		
u = -0.54565 - 1.32924I		
a = 2.33430 - 1.17622I	19.4483 - 0.1620I	-7.85194 + 0.70320I
b = -1.00453 + 2.47780I		
u = -0.50245 + 1.36268I		
a = -0.91739 - 2.80304I	-19.6493 + 10.9702I	-7.71994 - 4.45500I
b = -1.11454 + 2.73435I		
u = -0.50245 - 1.36268I		
a = -0.91739 + 2.80304I	-19.6493 - 10.9702I	-7.71994 + 4.45500I
b = -1.11454 - 2.73435I		
u = -0.401727 + 0.043777I		
a = 0.05735 + 1.66973I	2.31319 - 2.74078I	-11.17617 + 6.82485I
b = 0.241130 + 1.099340I		
u = -0.401727 - 0.043777I		
a = 0.05735 - 1.66973I	2.31319 + 2.74078I	-11.17617 - 6.82485I
b = 0.241130 - 1.099340I		
u = 0.259155		
a = -1.14150	-0.567617	-17.5650
b = 0.234939		

$$\begin{matrix} \text{II.} \\ I_2^u = \langle -2u^{13} + 8u^{12} + \cdots + b + 3, \ -u^{13} + 2u^{12} + \cdots + a - 2, \ u^{14} - 4u^{13} + \cdots - 4u + 1 \rangle \end{matrix}$$

(i) Arc colorings

$$a_{8} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0\\u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1\\u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u\\u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{13} - 2u^{12} + \dots + 2u^{2} + 2\\2u^{13} - 8u^{12} + \dots + 11u - 3 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 3u^{13} - 10u^{12} + \dots + 11u - 1\\2u^{13} - 8u^{12} + \dots + 11u - 3 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{13} - 2u^{12} + \dots - 13u + 6\\u^{13} - 5u^{12} + \dots + 11u - 2 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u\\u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 2u^{13} - 6u^{12} + \dots - 15u^{2} + 8u\\2u^{13} - 8u^{12} + \dots + 9u - 2 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{13} - 2u^{12} + \dots - 15u^{2} + 8u\\2u^{13} - 8u^{12} + \dots + 9u - 2 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 3u^{13} - 9u^{12} + \dots + 19u - 4\\2u^{13} - 10u^{12} + \dots + 19u - 4\\-u^{13} + 4u^{12} + \dots + 5u^{2} - 1 \end{pmatrix}$$

(ii) Obstruction class = 1

(iii) Cusp Shapes = $u^{13} - u^{12} + u^{11} + 5u^{10} - 14u^9 + 23u^8 - 33u^7 + 27u^6 - 30u^5 + 16u^4 - 18u^3 + 11u^2 - 4u - 5$

Crossings	u-Polynomials at each crossing
c_1	$u^{14} - 10u^{13} + \dots - 13u + 1$
<i>C</i> ₂	$u^{14} + 2u^{13} + \dots - u + 1$
<i>C</i> ₃	$u^{14} - u^{13} + \dots - 2u - 1$
c_4	$u^{14} - 3u^{13} + \dots + 2u^2 - 1$
c_5, c_9	$u^{14} + 2u^{12} + 4u^{11} - u^{10} + 4u^9 + 5u^8 - 4u^7 + 4u^6 + 5u^5 - 3u^4 + 3u^2 - 1$
<i>c</i> ₆	$u^{14} - 2u^{13} + \dots + u + 1$
C ₇	$u^{14} + 3u^{13} + \dots + 2u^2 - 1$
C ₈	$u^{14} - 4u^{13} + \dots - 4u + 1$
c_{10}	$u^{14} + 2u^{12} - 4u^{11} - u^{10} - 4u^9 + 5u^8 + 4u^7 + 4u^6 - 5u^5 - 3u^4 + 3u^2 - 1$
c_{11}, c_{12}	$u^{14} + 4u^{13} + \dots + 4u + 1$

(iv) u-Polynomials at the component

Crossings	Riley Polynomials at each crossing
<i>c</i> ₁	$y^{14} - 2y^{13} + \dots - 13y + 1$
c_2, c_6	$y^{14} - 10y^{13} + \dots - 13y + 1$
<i>C</i> ₃	$y^{14} + 3y^{13} + \dots - 2y + 1$
c_4, c_7	$y^{14} + 5y^{13} + \dots - 4y + 1$
c_5, c_9, c_{10}	$y^{14} + 4y^{13} + \dots - 6y + 1$
c_8, c_{11}, c_{12}	$y^{14} + 10y^{13} + \dots + 8y + 1$

(\mathbf{v}) Riley Polynomials at the component

(vi) Comp	olex Volumes	and Cusp	Shapes
-----------	--------------	----------	--------

Solutions to I_2^u	$\sqrt{-1}(\operatorname{vol}+\sqrt{-1}CS)$	Cusp shape
u = 0.257957 + 1.025710I		
a = -1.21422 + 1.52525I	4.34730 - 4.58698I	-8.81634 + 3.98143I
b = -0.32410 - 1.59615I		
u = 0.257957 - 1.025710I		
a = -1.21422 - 1.52525I	4.34730 + 4.58698I	-8.81634 - 3.98143I
b = -0.32410 + 1.59615I		
u = 1.16118		
a = -0.0729981	-6.14347	-34.2700
b = 0.525903		
u = 0.813113		
a = -0.251527	-3.21147	-11.3390
b = -1.09435		
u = -0.388843 + 0.655973I		
a = 1.45724 - 0.21090I	2.53558 + 1.80767I	-8.41467 - 3.02752I
b = -0.540730 + 0.491931I		
u = -0.388843 - 0.655973I		
a = 1.45724 + 0.21090I	2.53558 - 1.80767I	-8.41467 + 3.02752I
b = -0.540730 - 0.491931I		
u = -0.082992 + 1.265620I		
a = 0.16854 - 1.56029I	7.63621 + 2.52748I	-1.68376 - 3.30171I
b = 0.608944 + 1.028170I		
u = -0.082992 - 1.265620I		
a = 0.16854 + 1.56029I	7.63621 - 2.52748I	-1.68376 + 3.30171I
b = 0.608944 - 1.028170I		
u = 0.382406 + 1.302770I		
a = 0.432449 + 1.237680I	0.89066 - 4.29944I	-6.20629 + 3.86373I
b = -1.079670 - 0.598913I		
u = 0.382406 - 1.302770I		
a = 0.432449 - 1.237680I	0.89066 + 4.29944I	-6.20629 - 3.86373I
b = -1.079670 + 0.598913I		

Solutions to I_2^u	$\sqrt{-1}(\operatorname{vol}+\sqrt{-1}CS)$	Cusp shape
u = 0.60307 + 1.35028I		
a = -0.114629 - 0.604014I	-2.00359 - 6.20208I	-16.6975 + 15.2700I
b = 0.503402 + 0.404837I		
u = 0.60307 - 1.35028I		
a = -0.114629 + 0.604014I	-2.00359 + 6.20208I	-16.6975 - 15.2700I
b = 0.503402 - 0.404837I		
u = 0.241260 + 0.439152I		
a = 1.93287 + 0.62822I	2.78585 + 2.08540I	-5.87726 + 0.45245I
b = -0.383623 + 1.096450I		
u = 0.241260 - 0.439152I		
a = 1.93287 - 0.62822I	2.78585 - 2.08540I	-5.87726 - 0.45245I
b = -0.383623 - 1.096450I		

Crossings	u-Polynomials at each crossing
c_1	$(u^{14} - 10u^{13} + \dots - 13u + 1)(u^{20} + 10u^{19} + \dots + 29696u + 4096)$
c_2	$(u^{14} + 2u^{13} + \dots - u + 1)(u^{20} - 16u^{19} + \dots + 224u - 64)$
<i>C</i> 3	$(u^{14} - u^{13} + \dots - 2u - 1)(u^{20} + 2u^{19} + \dots - 135u - 31)$
C4	$(u^{14} - 3u^{13} + \dots + 2u^2 - 1)(u^{20} - 4u^{19} + \dots + u - 1)$
c_5, c_9	$(u^{14} + 2u^{12} + 4u^{11} - u^{10} + 4u^9 + 5u^8 - 4u^7 + 4u^6 + 5u^5 - 3u^4 + 3u^2 - 1)$ $\cdot (u^{20} - u^{19} + \dots - 3u - 1)$
<i>c</i> ₆	$(u^{14} - 2u^{13} + \dots + u + 1)(u^{20} - 16u^{19} + \dots + 224u - 64)$
<i>C</i> ₇	$(u^{14} + 3u^{13} + \dots + 2u^2 - 1)(u^{20} - 4u^{19} + \dots + u - 1)$
C8	$(u^{14} - 4u^{13} + \dots - 4u + 1)(u^{20} - 3u^{19} + \dots - 3u + 1)$
c ₁₀	$(u^{14} + 2u^{12} - 4u^{11} - u^{10} - 4u^9 + 5u^8 + 4u^7 + 4u^6 - 5u^5 - 3u^4 + 3u^2 - 1)$ $\cdot (u^{20} - u^{19} + \dots - 3u - 1)$
c_{11}, c_{12}	$(u^{14} + 4u^{13} + \dots + 4u + 1)(u^{20} - 3u^{19} + \dots - 3u + 1)$

III.	u-Polynomials
------	---------------

Crossings	Riley Polynomials at each crossing
c_1	$(y^{14} - 2y^{13} + \dots - 13y + 1)$ $\cdot (y^{20} + 102y^{19} + \dots - 1112539136y + 16777216)$
c_2, c_6	$(y^{14} - 10y^{13} + \dots - 13y + 1)(y^{20} - 10y^{19} + \dots - 29696y + 4096)$
c_3	$(y^{14} + 3y^{13} + \dots - 2y + 1)(y^{20} + 44y^{19} + \dots - 12831y + 961)$
c_4, c_7	$(y^{14} + 5y^{13} + \dots - 4y + 1)(y^{20} + 42y^{19} + \dots - 29y + 1)$
c_5, c_9, c_{10}	$(y^{14} + 4y^{13} + \dots - 6y + 1)(y^{20} + 49y^{19} + \dots + 9y + 1)$
c_8, c_{11}, c_{12}	$(y^{14} + 10y^{13} + \dots + 8y + 1)(y^{20} + 15y^{19} + \dots - 21y + 1)$

IV. Riley Polynomials