$12n_{0655}$ (K12 n_{0655})

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle 8082770070u^{10} + 12874278132u^9 + \dots + 78579513703b + 583530199807, \\ &\quad -10533832913358u^{10} - 20498499647469u^9 + \dots + 43925948159977a - 453136624250477, \\ &\quad u^{11} + u^{10} - 25u^9 + 84u^8 - 4u^7 - 295u^6 + 294u^5 + 266u^4 - 592u^3 + 258u^2 + 53u - 43 \rangle \\ I_2^u &= \langle -13u^{11} + 11u^{10} - 7u^9 + 26u^8 + 50u^7 - 47u^6 + 8u^5 - 54u^4 - 44u^3 + 10u^2 + 46b + 21u + 53, \\ &\quad 8u^{11} + 18u^{10} - u^9 + 30u^8 - 52u^7 - 33u^6 + 11u^5 - 57u^4 + 66u^3 + 54u^2 + 23a + 26u + 1, \\ &\quad u^{12} + 2u^{10} - u^9 - 2u^8 - u^7 - 3u^6 + 2u^5 + 2u^4 + 4u^3 + u^2 - 1 \rangle \\ I_3^u &= \langle b^2 - b + 1, \ a - 1, \ u - 1 \rangle \end{split}$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 25 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^{2}}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$a_{3} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0.239809u^{10} + 0.466660u^{9} + \dots - 5.07748u + 10.3159 \\ -0.102861u^{10} - 0.163838u^{9} + \dots - 2.44421u - 7.42598 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1.00685u^{10} + 1.73463u^{9} + \dots + 5.81239u + 59.4569 \\ 0.149991u^{10} + 0.294158u^{9} + \dots - 2.04642u + 6.58542 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0.136948u^{10} + 0.302823u^{9} + \dots - 7.52169u + 2.88994 \\ -0.102861u^{10} - 0.163838u^{9} + \dots - 2.44421u - 7.42598 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -0.0526849u^{10} - 0.162132u^{9} + \dots + 7.57873u + 2.62004 \\ 0.214365u^{10} + 0.374779u^{9} + \dots + 1.03850u + 11.9120 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -0.240845u^{10} - 0.364372u^{9} + \dots - 6.91721u - 16.6179 \\ -0.192976u^{10} - 0.323582u^{9} + \dots - 1.76300u - 11.8971 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.672190u^{10} + 1.17359u^{9} + \dots + 5.50874u + 38.9931 \\ 0.241840u^{10} + 0.437101u^{9} + \dots + 1.35348u + 12.9629 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0.672190u^{10} + 1.17359u^{9} + \dots + 5.50874u + 38.9931 \\ 0.241840u^{10} + 0.437101u^{9} + \dots + 1.35348u + 12.9629 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0.672190u^{10} + 1.17359u^{9} + \dots - 0.976455u - 8.59734 \\ 0.0516713u^{10} + 0.0842453u^{9} + \dots - 1.24682u + 2.06071 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0.526320u^{10} + 0.909361u^{9} + \dots + 4.53228u + 30.3957 \\ -0.145871u^{10} - 0.264230u^{9} + \dots - 0.976455u - 8.59734 \end{pmatrix}$$

(i) Arc colorings

(ii) Obstruction class = -1

 $\begin{array}{c} \text{I.} \\ I_1^u = \langle 8.08 \times 10^9 u^{10} + 1.29 \times 10^{10} u^9 + \cdots + 7.86 \times 10^{10} b + 5.84 \times 10^{11}, \ -1.05 \times 10^{13} u^{10} - 2.05 \times 10^{13} u^9 + \cdots + 4.39 \times 10^{13} a - 4.53 \times 10^{14}, \ u^{11} + u^{10} + \cdots + 53 u - 43 \rangle \end{array}$

(iii) Cusp Shapes = $\frac{1137457766308}{1021533678139}u^{10} + \frac{2052116979712}{1021533678139}u^9 + \dots + \frac{13195254097138}{1021533678139}u + \frac{47127968197766}{1021533678139}u^{10}$

Crossings	u-Polynomials at each crossing
c_1	$u^{11} + 30u^{10} + \dots + 46180u + 6241$
c_2, c_7	$u^{11} + 2u^{10} + \dots + 290u + 79$
c_3, c_4, c_{11}	$u^{11} - 3u^{10} + \dots - 4u + 1$
c_5, c_8	$u^{11} - 6u^{10} + \dots + 59u + 14$
c_{6}, c_{10}	$u^{11} + 16u^{10} + \dots - 1205u - 239$
<i>C</i> 9	$u^{11} + u^{10} + \dots + 53u - 43$
c ₁₂	$u^{11} + 2u^{10} + \dots - 9u - 4$

(iv) u-Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{11} - 270y^{10} + \dots + 1320014200y - 38950081$
c_2, c_7	$y^{11} - 30y^{10} + \dots + 46180y - 6241$
c_3, c_4, c_{11}	$y^{11} + 9y^{10} + \dots + 78y - 1$
c_5, c_8	$y^{11} - 24y^{10} + \dots + 4069y - 196$
c_6, c_{10}	$y^{11} - 94y^{10} + \dots + 639425y - 57121$
<i>C</i> 9	$y^{11} - 51y^{10} + \dots + 24997y - 1849$
c ₁₂	$y^{11} - 28y^{10} + \dots + 289y - 16$

(\mathbf{v}) Riley Polynomials at the component

(vi)	Complex	Volumes	and	Cusp	Shapes	

Solutions to I_1^u	$\sqrt{-1}(\operatorname{vol}+\sqrt{-1}CS)$	Cusp shape
u = 1.14783		
a = -0.625800	-7.73425	-2.27460
b = 0.599073		
u = 0.961384 + 0.663629I		
a = 0.896764 - 0.517452I	1.65294 + 2.05058I	-10.88896 - 3.66206I
b = 0.196134 + 1.286040I		
u = 0.961384 - 0.663629I		
a = 0.896764 + 0.517452I	1.65294 - 2.05058I	-10.88896 + 3.66206I
b = 0.196134 - 1.286040I		
u = 0.729816 + 0.078717I		
a = -2.86559 - 0.69887I	9.56370 + 2.81490I	-11.11373 - 3.91531I
b = -0.674831 + 0.650678I		
u = 0.729816 - 0.078717I		
a = -2.86559 + 0.69887I	9.56370 - 2.81490I	-11.11373 + 3.91531I
b = -0.674831 - 0.650678I		
u = -1.47245 + 0.38796I		
a = -0.199156 - 0.028059I	-1.22023 - 2.91334I	-10.21854 + 2.00386I
b = -1.09827 - 0.95568I		
u = -1.47245 - 0.38796I		
a = -0.199156 + 0.028059I	-1.22023 + 2.91334I	-10.21854 - 2.00386I
b = -1.09827 + 0.95568I		
u = -0.357190		
a = 0.642478	-0.556349	-18.0810
b = -0.230598		
u = 2.17516 + 2.14936I		
a = 0.426144 - 0.535385I	-15.4000 - 9.3794I	-9.97556 + 3.09821I
b = 1.92336 + 1.67643I		
u = 2.17516 - 2.14936I		
a = 0.426144 + 0.535385I	-15.4000 + 9.3794I	-9.97556 - 3.09821I
b = 1.92336 - 1.67643I		

Solutions to I_1^u	$\sqrt{-1}(\mathrm{vol} + \sqrt{-1}CS)$	Cusp shape
u = -6.57845		
a = 0.327461	17.4529	-11.2510
b = 4.93875		

II.
$$I_2^u = \langle -13u^{11} + 11u^{10} + \dots + 46b + 53, 8u^{11} + 18u^{10} + \dots + 23a + 1, u^{12} + 2u^{10} + \dots + u^2 - 1 \rangle$$

(i) Arc colorings

$$\begin{aligned} a_{3} &= \begin{pmatrix} 0 \\ u \end{pmatrix} \\ a_{9} &= \begin{pmatrix} 1 \\ 0 \end{pmatrix} \\ a_{6} &= \begin{pmatrix} -0.347826u^{11} - 0.782609u^{10} + \dots - 1.13043u - 0.0434783 \\ 0.282609u^{11} - 0.239130u^{10} + \dots - 0.456522u - 1.15217 \end{pmatrix} \\ a_{10} &= \begin{pmatrix} 1 \\ u^{2} \end{pmatrix} \\ a_{11} &= \begin{pmatrix} -1.02174u^{11} + 1.32609u^{10} + \dots + 2.80435u + 0.934783 \\ u^{2} + 1 \end{pmatrix} \\ a_{5} &= \begin{pmatrix} -0.0652174u^{11} - 1.02174u^{10} + \dots - 1.58696u - 1.19565 \\ 0.282609u^{11} - 0.239130u^{10} + \dots - 0.456522u - 1.15217 \end{pmatrix} \\ a_{4} &= \begin{pmatrix} 0.891304u^{11} - 0.369565u^{10} + \dots - 1.97826u - 1.32609 \\ 0.586957u^{11} - 0.804348u^{10} + \dots - 0.717391u - 0.239130 \end{pmatrix} \\ a_{8} &= \begin{pmatrix} -0.456522u^{11} - 0.152174u^{10} + \dots - 0.108696u - 0.369565 \\ 0.282609u^{11} - 0.239130u^{10} + \dots - 0.456522u - 1.15217 \end{pmatrix} \\ a_{2} &= \begin{pmatrix} 0.630435u^{11} - 0.456522u^{10} + \dots - 0.326087u - 0.108696 \\ 0.239130u^{11} + 0.413043u^{10} + \dots + 2.15217u - 0.282609 \end{pmatrix} \\ a_{1} &= \begin{pmatrix} 0.108696u^{11} - 0.630435u^{10} + \dots - 1.02174u + 0.326087 \\ -1 \end{pmatrix} \\ a_{12} &= \begin{pmatrix} 1.02174u^{11} - 0.326087u^{10} + \dots + 1.52174u + 0.173913 \\ 0.391304u^{11} + 0.130435u^{10} + \dots + 1.52174u + 0.173913 \end{pmatrix} \end{aligned}$$

(ii) Obstruction class = 1

(iii) Cusp Shapes = $\frac{18}{23}u^{11} - \frac{63}{23}u^{10} + \frac{84}{23}u^9 - \frac{151}{23}u^8 + \frac{113}{23}u^7 + \frac{58}{23}u^6 - \frac{50}{23}u^5 + \frac{188}{23}u^4 - \frac{139}{23}u^3 - \frac{74}{23}u^2 - \frac{160}{23}u - \frac{153}{23}u^8 + \frac{113}{23}u^7 + \frac{58}{23}u^6 - \frac{50}{23}u^5 + \frac{188}{23}u^4 - \frac{139}{23}u^3 - \frac{74}{23}u^2 - \frac{160}{23}u - \frac{153}{23}u^8 + \frac{113}{23}u^7 + \frac{58}{23}u^6 - \frac{50}{23}u^5 + \frac{188}{23}u^4 - \frac{139}{23}u^3 - \frac{74}{23}u^2 - \frac{160}{23}u - \frac{153}{23}u^8 + \frac{113}{23}u^7 + \frac{58}{23}u^6 - \frac{50}{23}u^5 + \frac{188}{23}u^4 - \frac{139}{23}u^3 - \frac{74}{23}u^2 - \frac{160}{23}u - \frac{153}{23}u^8 + \frac{113}{23}u^7 + \frac{58}{23}u^6 - \frac{50}{23}u^5 + \frac{188}{23}u^4 - \frac{139}{23}u^3 - \frac{74}{23}u^2 - \frac{160}{23}u - \frac{153}{23}u^8 + \frac{113}{23}u^7 + \frac{113}{23}u^7 + \frac{113}{23}u^8 - \frac{113}{23}u^8$

Crossings	u-Polynomials at each crossing
c_1	$u^{12} - 12u^{11} + \dots - 14u + 1$
<i>c</i> ₂	$u^{12} - 6u^{10} + u^9 + 15u^8 - 4u^7 - 21u^6 + 5u^5 + 17u^4 - 3u^3 - 7u^2 + 1$
c_3, c_4	$u^{12} + u^{11} + \dots - 2u^2 - 1$
c_5	$u^{12} - 3u^{11} + 5u^{10} - 5u^9 + 5u^7 - 5u^6 + 2u^5 + 3u^4 - 3u^3 - 1$
<i>c</i> ₆	$u^{12} + 3u^9 - 3u^8 - 2u^7 + 5u^6 - 5u^5 + 5u^3 - 5u^2 + 3u - 1$
C ₇	$u^{12} - 6u^{10} - u^9 + 15u^8 + 4u^7 - 21u^6 - 5u^5 + 17u^4 + 3u^3 - 7u^2 + 1$
C ₈	$u^{12} + 3u^{11} + 5u^{10} + 5u^9 - 5u^7 - 5u^6 - 2u^5 + 3u^4 + 3u^3 - 1$
<i>C</i> 9	$u^{12} + 2u^{10} - u^9 - 2u^8 - u^7 - 3u^6 + 2u^5 + 2u^4 + 4u^3 + u^2 - 1$
c_{10}	$u^{12} - 3u^9 - 3u^8 + 2u^7 + 5u^6 + 5u^5 - 5u^3 - 5u^2 - 3u - 1$
c_{11}	$u^{12} - u^{11} + \dots - 2u^2 - 1$
c_{12}	$u^{12} - 4u^{11} + \dots + 14u + 13$

(iv) u-Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{12} - 12y^{11} + \dots - 30y + 1$
c_2, c_7	$y^{12} - 12y^{11} + \dots - 14y + 1$
c_3, c_4, c_{11}	$y^{12} + 15y^{11} + \dots + 4y + 1$
c_5, c_8	$y^{12} + y^{11} + \dots - 6y^2 + 1$
c_6, c_{10}	$y^{12} - 6y^{10} + \dots + y + 1$
<i>C</i> 9	$y^{12} + 4y^{11} + \dots - 2y + 1$
c_{12}	$y^{12} - 18y^{11} + \dots + 298y + 169$

(\mathbf{v}) Riley Polynomials at the component

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\operatorname{vol}+\sqrt{-1}CS)$	Cusp shape
u = -0.290321 + 0.812321I		
a = 1.60962 + 2.31665I	10.30340 - 2.52674I	-1.40798 + 1.03113I
b = -0.148186 - 0.670337I		
u = -0.290321 - 0.812321I		
a = 1.60962 - 2.31665I	10.30340 + 2.52674I	-1.40798 - 1.03113I
b = -0.148186 + 0.670337I		
u = -1.14608		
a = -0.443256	-8.04457	-28.6700
b = 0.750402		
u = 1.126080 + 0.271306I		
a = -0.106545 + 0.615518I	-3.20078 - 2.30167I	-14.2286 + 2.6049I
b = 0.727354 + 0.248918I		
u = 1.126080 - 0.271306I		
a = -0.106545 - 0.615518I	-3.20078 + 2.30167I	-14.2286 - 2.6049I
b= 0.727354 - 0.248918 I		
u = 0.184248 + 1.148890I		
a = 0.47497 - 1.34357I	2.61823 + 1.74326I	-3.69799 - 2.86039I
b = -0.296082 + 1.038070I		
u = 0.184248 - 1.148890I		
a = 0.47497 + 1.34357I	2.61823 - 1.74326I	-3.69799 + 2.86039I
b = -0.296082 - 1.038070I		
u = -0.564251 + 0.474715I		
a = -1.270550 - 0.606648I	0.75595 + 3.94751I	-8.05344 - 4.79157I
b = -1.199700 + 0.382821I		
u = -0.564251 - 0.474715I		
a = -1.270550 + 0.606648I	0.75595 - 3.94751I	-8.05344 + 4.79157I
b = -1.199700 - 0.382821I		
u = 0.524737		
a = -1.48305	-3.37867	-11.4520
b = -1.22481		

Solutions to I_2^u	$\sqrt{-1}(\mathrm{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.14508 + 1.49712I		
a = 0.255664 + 0.886834I	5.10447 - 1.33905I	-8.55072 + 1.28965I
b = -0.34618 - 1.41208I		
u = -0.14508 - 1.49712I		
a = 0.255664 - 0.886834I	5.10447 + 1.33905I	-8.55072 - 1.28965I
b = -0.34618 + 1.41208I		

III.
$$I_3^u = \langle b^2 - b + 1, \ a - 1, \ u - 1 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 0\\1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1\\b \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1\\1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} b\\0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} b+1\\b \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} b\\b \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} b\\b \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -b+1\\-b+1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -b\\-b+1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -b\\1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -b+2\\1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -b+1\\1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = -4b 7

Crossings	u-Polynomials at each crossing		
c_1, c_2, c_5 c_7, c_8	$u^2 - u + 1$		
c_3, c_4, c_6 c_{10}, c_{11}	$u^2 + u + 1$		
c_9, c_{12}	$(u-1)^2$		

(iv) u-Polynomials at the component

(\mathbf{v}) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing		
c_1, c_2, c_3 c_4, c_5, c_6 c_7, c_8, c_{10} c_{11}	$y^2 + y + 1$		
c_9, c_{12}	$(y-1)^2$		

(vi) Complex Volumes and Cusp Shapes

	Solutions to I_3^u	$\sqrt{-1}(\operatorname{vol}+\sqrt{-1}CS)$	Cusp shape
u =	1.00000		
a =	1.00000	1.64493 + 2.02988I	-9.00000 - 3.46410I
b =	0.500000 + 0.866025I		
u =	1.00000		
a =	1.00000	1.64493 - 2.02988I	-9.00000 + 3.46410I
b =	0.500000 - 0.866025I		

Crossings	u-Polynomials at each crossing
c_1	$(u^2 - u + 1)(u^{11} + 30u^{10} + \dots + 46180u + 6241)$ $\cdot (u^{12} - 12u^{11} + \dots - 14u + 1)$
<i>c</i> ₂	$(u^{2} - u + 1)(u^{11} + 2u^{10} + \dots + 290u + 79)$ $\cdot (u^{12} - 6u^{10} + u^{9} + 15u^{8} - 4u^{7} - 21u^{6} + 5u^{5} + 17u^{4} - 3u^{3} - 7u^{2} + 1)$
c_3, c_4	$(u^{2} + u + 1)(u^{11} - 3u^{10} + \dots - 4u + 1)(u^{12} + u^{11} + \dots - 2u^{2} - 1)$
<i>C</i> 5	$(u^{2} - u + 1)(u^{11} - 6u^{10} + \dots + 59u + 14)$ $\cdot (u^{12} - 3u^{11} + 5u^{10} - 5u^{9} + 5u^{7} - 5u^{6} + 2u^{5} + 3u^{4} - 3u^{3} - 1)$
<i>c</i> ₆	$(u^{2} + u + 1)(u^{11} + 16u^{10} + \dots - 1205u - 239)$ $\cdot (u^{12} + 3u^{9} - 3u^{8} - 2u^{7} + 5u^{6} - 5u^{5} + 5u^{3} - 5u^{2} + 3u - 1)$
<i>C</i> ₇	$(u^{2} - u + 1)(u^{11} + 2u^{10} + \dots + 290u + 79)$ $\cdot (u^{12} - 6u^{10} - u^{9} + 15u^{8} + 4u^{7} - 21u^{6} - 5u^{5} + 17u^{4} + 3u^{3} - 7u^{2} + 1)$
<i>c</i> ₈	$(u^{2} - u + 1)(u^{11} - 6u^{10} + \dots + 59u + 14)$ $\cdot (u^{12} + 3u^{11} + 5u^{10} + 5u^{9} - 5u^{7} - 5u^{6} - 2u^{5} + 3u^{4} + 3u^{3} - 1)$
c_9	$((u-1)^2)(u^{11} + u^{10} + \dots + 53u - 43)$ $\cdot (u^{12} + 2u^{10} - u^9 - 2u^8 - u^7 - 3u^6 + 2u^5 + 2u^4 + 4u^3 + u^2 - 1)$
c_{10}	$(u^{2} + u + 1)(u^{11} + 16u^{10} + \dots - 1205u - 239)$ $\cdot (u^{12} - 3u^{9} - 3u^{8} + 2u^{7} + 5u^{6} + 5u^{5} - 5u^{3} - 5u^{2} - 3u - 1)$
c_{11}	$(u^{2} + u + 1)(u^{11} - 3u^{10} + \dots - 4u + 1)(u^{12} - u^{11} + \dots - 2u^{2} - 1)$
c ₁₂	$((u-1)^2)(u^{11}+2u^{10}+\dots-9u-4)(u^{12}-4u^{11}+\dots+14u+13)$

IV. u-Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$(y^2 + y + 1)(y^{11} - 270y^{10} + \dots + 1.32001 \times 10^9 y - 3.89501 \times 10^7)$ $\cdot (y^{12} - 12y^{11} + \dots - 30y + 1)$
c_2, c_7	$(y^2 + y + 1)(y^{11} - 30y^{10} + \dots + 46180y - 6241)$ $\cdot (y^{12} - 12y^{11} + \dots - 14y + 1)$
c_3, c_4, c_{11}	$(y^2 + y + 1)(y^{11} + 9y^{10} + \dots + 78y - 1)(y^{12} + 15y^{11} + \dots + 4y + 1)$
c_5, c_8	$(y^2 + y + 1)(y^{11} - 24y^{10} + \dots + 4069y - 196)(y^{12} + y^{11} + \dots - 6y^2 + 1)$
c_6, c_{10}	$(y^2 + y + 1)(y^{11} - 94y^{10} + \dots + 639425y - 57121)$ $\cdot (y^{12} - 6y^{10} + \dots + y + 1)$
<i>C</i> 9	$((y-1)^2)(y^{11} - 51y^{10} + \dots + 24997y - 1849)$ $\cdot (y^{12} + 4y^{11} + \dots - 2y + 1)$
c_{12}	$((y-1)^2)(y^{11} - 28y^{10} + \dots + 289y - 16)$ $\cdot (y^{12} - 18y^{11} + \dots + 298y + 169)$

V. Riley Polynomials