

Ideals for irreducible components s^{2} of $X_{\text {par }}$

$$
I_{1}^{u}=\left\langle u^{2}+u+1\right\rangle
$$

* 1 irreducible components of $\operatorname{dim}_{\mathbb{C}}=0$, with total 2 representations.

[^0]I. $I_{1}^{u}=\left\langle u^{2}+u+1\right\rangle$
(i) Arc colorings
\[

$$
\begin{aligned}
& a_{2}=\binom{1}{0} \\
& a_{4}=\binom{0}{u} \\
& a_{1}=\binom{1}{-u-1} \\
& a_{3}=\binom{-u}{u}
\end{aligned}
$$
\]

(ii) Obstruction class $=-1$
(iii) Cusp Shapes $=4 u+2$
(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing	
c_{1}, c_{3}	$u^{2}-u+1$	
c_{2}, c_{4}	$u^{2}+u+1$	

(v) Riley Polynomials at the component

Crossings		Riley Polynomials at each crossing
c_{1}, c_{2}, c_{3}	$y^{2}+y+1$	
c_{4}		

(vi) Complex Volumes and Cusp Shapes

Solutions to I_{1}^{u}	$\sqrt{-1}(\mathrm{vol}+\sqrt{-1} C S)$	Cusp shape
$u=-0.500000+0.866025 I$	$-2.02988 I$	$0 .+3.46410 I$
$u=-0.500000-0.866025 I$	$2.02988 I$	$0 .-3.46410 I$

II. u-Polynomials

Crossings	u -Polynomials at each crossing
c_{1}, c_{3}	$u^{2}-u+1$
c_{2}, c_{4}	$u^{2}+u+1$

III. Riley Polynomials

Crossings		Riley Polynomials at each crossing
c_{1}, c_{2}, c_{3}	$y^{2}+y+1$	
c_{4}		

[^0]: ${ }^{1}$ The image of knot diagram is generated by the software "Draw programme" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm\#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
 ${ }^{2}$ All coefficients of polynomials are rational numbers. But the coetficients are sometimes approximated in decimal forms when there is not enough margin.

