

Ideals for irreducible components s^{2} of $X_{\text {par }}$

$$
\begin{aligned}
I_{1}^{u} & =\left\langle b+u+1, a+1, u^{2}-2 u-1\right\rangle \\
I_{2}^{u} & =\langle b, a+1, u+1\rangle
\end{aligned}
$$

* 2 irreducible components of $\operatorname{dim}_{\mathbb{C}}=0$, with total 3 representations.

[^0]$$
\text { I. } I_{1}^{u}=\left\langle b+u+1, a+1, u^{2}-2 u-1\right\rangle
$$
(i) Arc colorings
\[

$$
\begin{aligned}
& a_{2}=\binom{0}{u} \\
& a_{4}=\binom{1}{0} \\
& a_{5}=\binom{1}{2 u+1} \\
& a_{7}=\binom{-1}{-u-1} \\
& a_{1}=\binom{u}{4 u+1} \\
& a_{3}=\binom{-u}{-4 u-2} \\
& a_{6}=\binom{-2 u}{-8 u-3} \\
& a_{8}=\binom{u}{-u-1}
\end{aligned}
$$
\]

(ii) Obstruction class $=-1$
(iii) Cusp Shapes $=-12$
(iv) u-Polynomials at the component

Crossings	u -Polynomials at each crossing
c_{1}, c_{2}, c_{4}	$u^{2}-2 u-1$
c_{5}, c_{6}	
c_{3}, c_{7}	$u^{2}+4 u+2$
c_{8}	$u^{2}+6 u+1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_{1}, c_{2}, c_{4}	$y^{2}-6 y+1$
c_{5}, c_{6}	
c_{3}, c_{7}	$y^{2}-12 y+4$
c_{8}	$y^{2}-34 y+1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_{1}^{u}	$\sqrt{-1}(\mathrm{vol}+\sqrt{-1} C S)$	Cusp shape
$u=-0.414214$	-0.822467	-12.0000
$a=-1.00000$		
$b=-0.585786$	18.9167	-12.0000
$u=2.41421$		
$a=-1.00000$		

$$
\text { II. } I_{2}^{u}=\langle b, a+1, u+1\rangle
$$

(i) Arc colorings

$$
\begin{aligned}
& a_{2}=\binom{0}{-1} \\
& a_{4}=\binom{1}{0} \\
& a_{5}=\binom{1}{1} \\
& a_{7}=\binom{-1}{0} \\
& a_{1}=\binom{-1}{-1} \\
& a_{3}=\binom{1}{0} \\
& a_{6}=\binom{0}{1} \\
& a_{8}=\binom{-1}{0}
\end{aligned}
$$

(ii) Obstruction class $=1$
(iii) Cusp Shapes $=-12$
(iv) u-Polynomials at the component

Crossings	
c_{1}, c_{4}, c_{5}	$u+1$
c_{2}, c_{6}, c_{8}	$u-1$
c_{3}, c_{7}	u

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_{1}, c_{2}, c_{4}	$y-1$
c_{5}, c_{6}, c_{8}	
c_{3}, c_{7}	y

(vi) Complex Volumes and Cusp Shapes

Solutions to I_{2}^{u}		$\sqrt{-1}(\mathrm{vol}+\sqrt{-1} C S)$
$u=-1.00000$		Cusp shape
$a=-1.00000$	-3.28987	-12.0000
$b=$	0	

III. u-Polynomials

Crossings	u -Polynomials at each crossing
c_{1}, c_{4}, c_{5}	$(u+1)\left(u^{2}-2 u-1\right)$
c_{2}, c_{6}	$(u-1)\left(u^{2}-2 u-1\right)$
c_{3}, c_{7}	$u\left(u^{2}+4 u+2\right)$
c_{8}	$(u-1)\left(u^{2}+6 u+1\right)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_{1}, c_{2}, c_{4}	$(y-1)\left(y^{2}-6 y+1\right)$
c_{5}, c_{6}	
c_{3}, c_{7}	$y\left(y^{2}-12 y+4\right)$
c_{8}	$(y-1)\left(y^{2}-34 y+1\right)$

[^0]: ${ }^{1}$ The image of knot diagram is generated by the software "Draw programme" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm\#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
 ${ }^{2}$ All coefficients of polynomials are rational numbers. But the coetficients are sometimes approximated in decimal forms when there is not enough margin.

