

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle b + u + 1, a + 1, u^2 - 2u - 1 \rangle$$

 $I_2^u = \langle b, a + 1, u + 1 \rangle$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 3 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle b + u + 1, a + 1, u^2 - 2u - 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ 2u+1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -1 \\ -u-1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u \\ 4u+1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u \\ -4u-2 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -2u \\ -8u-3 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = -12

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2, c_4 c_5, c_6	$u^2 - 2u - 1$
c_{3}, c_{7}	$u^2 + 4u + 2$
c_8	$u^2 + 6u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
$c_1, c_2, c_4 \ c_5, c_6$	$y^2 - 6y + 1$
c_3, c_7	$y^2 - 12y + 4$
c ₈	$y^2 - 34y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.414214		
a = -1.00000	-0.822467	-12.0000
b = -0.585786		
u = 2.41421		
a = -1.00000	18.9167	-12.0000
b = -3.41421		

II.
$$I_2^u = \langle b, a+1, u+1 \rangle$$

(i) Arc colorings

$$a_2 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -12

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_4, c_5	u+1
c_2, c_6, c_8	u-1
c_3, c_7	u

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
$c_1, c_2, c_4 \\ c_5, c_6, c_8$	y-1
c_3, c_7	y

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000		
a = -1.00000	-3.28987	-12.0000
b = 0		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_4, c_5	$(u+1)(u^2-2u-1)$
c_2, c_6	$(u-1)(u^2 - 2u - 1)$
c_3, c_7	$u(u^2 + 4u + 2)$
c ₈	$(u-1)(u^2+6u+1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
$c_1, c_2, c_4 \ c_5, c_6$	$(y-1)(y^2-6y+1)$
c_3, c_7	$y(y^2 - 12y + 4)$
c ₈	$(y-1)(y^2 - 34y + 1)$