$9_1 (K9a_{41})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^3 - 3u - 1 \rangle$$

$$I_2^u = \langle u - 1 \rangle$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 4 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^{2}}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^3 - 3u - 1 \rangle$$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 1\\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0\\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1\\ u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u\\ -2u-1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{2}+1\\ -u^{2}-u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u\\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{2}+1\\ -u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u-1\\ -2u-1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u+1\\ u^{2}+u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u+1\\ u^{2}+u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = -18

(iv) u-Polynomials at the component

Crossings		u-Polynomials at each crossing
c_1, c_2, c_3 c_4, c_5, c_6 c_7, c_8, c_9	$u^3 - 3u - 1$	

(\mathbf{v}) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_4, c_5, c_6 c_7, c_8, c_9	$y^3 - 6y^2 + 9y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\operatorname{vol}+\sqrt{-1}CS)$	Cusp shape
u = -1.53209	-13.7078	-18.0000
u = -0.347296	-0.548311	-18.0000
u = 1.87939	12.6112	-18.0000

II.
$$I_2^u = \langle u - 1 \rangle$$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0\\1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1\\1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0\\1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1\\1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0\\-1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0\\0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -1\\-1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -1\\-1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = -18

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2, c_3	u-1

(\mathbf{v}) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_4, c_5, c_6 c_7, c_8, c_9	y-1

(vi) Complex Volumes and Cusp Shapes

	Solutions to I_2^u	$\sqrt{-1}(\mathrm{vol} + \sqrt{-1}CS)$	Cusp shape
u =	1.00000	-4.93480	-18.0000

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_2, c_3 c_4, c_5, c_6 c_7, c_8, c_9	$(u-1)(u^3 - 3u - 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_4, c_5, c_6 c_7, c_8, c_9	$(y-1)(y^3 - 6y^2 + 9y - 1)$