

Ideals for irreducible components s^{2} of $X_{\text {par }}$

$$
\begin{aligned}
I_{1}^{u} & =\left\langle u^{3}-3 u-1\right\rangle \\
I_{2}^{u} & =\langle u-1\rangle
\end{aligned}
$$

* 2 irreducible components of $\operatorname{dim}_{\mathbb{C}}=0$, with total 4 representations.

[^0]$$
\text { I. } I_{1}^{u}=\left\langle u^{3}-3 u-1\right\rangle
$$
(i) Arc colorings
\[

$$
\begin{aligned}
& a_{1}=\binom{1}{0} \\
& a_{6}=\binom{0}{u} \\
& a_{2}=\binom{1}{u^{2}} \\
& a_{7}=\binom{-u}{-2 u-1} \\
& a_{3}=\binom{-u^{2}+1}{-u^{2}-u} \\
& a_{5}=\binom{u}{u} \\
& a_{9}=\binom{-u^{2}+1}{-u^{2}} \\
& a_{4}=\binom{-u-1}{-2 u-1} \\
& a_{8}=\binom{u+1}{u^{2}+u} \\
& a_{8}=\binom{u+1}{u^{2}+u}
\end{aligned}
$$
\]

(ii) Obstruction class $=-1$
(iii) Cusp Shapes $=-18$
(iv) u-Polynomials at the component

Crossings	u -Polynomials at each crossing
c_{1}, c_{2}, c_{3}	
c_{4}, c_{5}, c_{6}	$u^{3}-3 u-1$
c_{7}, c_{8}, c_{9}	

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_{1}, c_{2}, c_{3}	
c_{4}, c_{5}, c_{6}	$y^{3}-6 y^{2}+9 y-1$
c_{7}, c_{8}, c_{9}	

(vi) Complex Volumes and Cusp Shapes

Solutions to I_{1}^{u}	$\sqrt{-1}(\mathrm{vol}+\sqrt{-1} C S)$	Cusp shape
$u=-1.53209$	-13.7078	-18.0000
$u=-0.347296$	-0.548311	-18.0000
$u=1.87939$	12.6112	-18.0000

II. $I_{2}^{u}=\langle u-1\rangle$
(i) Arc colorings

$$
\begin{aligned}
& a_{1}=\binom{1}{0} \\
& a_{6}=\binom{0}{1} \\
& a_{2}=\binom{1}{1} \\
& a_{7}=\binom{-1}{0} \\
& a_{3}=\binom{0}{1} \\
& a_{5}=\binom{1}{1} \\
& a_{9}=\binom{0}{-1} \\
& a_{4}=\binom{1}{0} \\
& a_{8}=\binom{-1}{-1} \\
& a_{8}=\binom{-1}{-1}
\end{aligned}
$$

(ii) Obstruction class $=-1$
(iii) Cusp Shapes $=-18$
(iv) u-Polynomials at the component

Crossings	u -Polynomials at each crossing
c_{1}, c_{2}, c_{3}	
c_{4}, c_{5}, c_{6}	$u-1$
c_{7}, c_{8}, c_{9}	

(v) Riley Polynomials at the component

Crossings	
c_{1}, c_{2}, c_{3}	
c_{4}, c_{5}, c_{6}	$y-1$
c_{7}, c_{8}, c_{9}	

(vi) Complex Volumes and Cusp Shapes

Solutions to I_{2}^{u}	$\sqrt{-1}(\mathrm{vol}+\sqrt{-1} C S)$	Cusp shape
$u=1.00000$	-4.93480	-18.0000

III. u-Polynomials

Crossings	u -Polynomials at each crossing
c_{1}, c_{2}, c_{3}	
c_{4}, c_{5}, c_{6}	$(u-1)\left(u^{3}-3 u-1\right)$
c_{7}, c_{8}, c_{9}	

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_{1}, c_{2}, c_{3}	
c_{4}, c_{5}, c_{6}	$(y-1)\left(y^{3}-6 y^{2}+9 y-1\right)$
c_{7}, c_{8}, c_{9}	

[^0]: ${ }^{1}$ The image of knot diagram is generated by the software "Draw programme" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm\#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
 ${ }^{2}$ All coefficients of polynomials are rational numbers. But the coetficients are sometimes approximated in decimal forms when there is not enough margin.

