

Ideals for irreducible components s^{2} of $X_{\text {par }}$

$$
I_{1}^{u}=\left\langle u^{2}-u-1\right\rangle
$$

* 1 irreducible components of $\operatorname{dim}_{\mathbb{C}}=0$, with total 2 representations.

[^0]$$
\text { I. } I_{1}^{u}=\left\langle u^{2}-u-1\right\rangle
$$
(i) Arc colorings
\[

$$
\begin{aligned}
a_{1} & =\binom{1}{0} \\
a_{4} & =\binom{0}{u} \\
a_{2} & =\binom{1}{u+1} \\
a_{3} & =\binom{u}{u} \\
a_{5} & =\binom{-u}{-u-1} \\
a_{5} & =\binom{-u}{-u-1}
\end{aligned}
$$
\]

(ii) Obstruction class $=-1$
(iii) Cusp Shapes $=-10$
(iv) u-Polynomials at the component

Crossings	
c_{1}, c_{2}, c_{3}	$u^{2}-$-Polynomials at each crossing
c_{4}, c_{5}	

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_{1}, c_{2}, c_{3}	$y^{2}-3 y+1$
c_{4}, c_{5}	

(vi) Complex Volumes and Cusp Shapes

Solutions to I_{1}^{u}	$\sqrt{-1}(\mathrm{vol}+\sqrt{-1} C S)$	Cusp shape
$u=-0.618034$	-0.986960	-10.0000
$u=1.61803$	-8.88264	-10.0000

II. u-Polynomials

Crossings		u -Polynomials at each crossing
c_{1}, c_{2}, c_{3}	$u^{2}-u-1$	
c_{4}, c_{5}		

III. Riley Polynomials

Crossings		Riley Polynomials at each crossing
c_{1}, c_{2}, c_{3}	$y^{2}-3 y+1$	
c_{4}, c_{5}		

[^0]: ${ }^{1}$ The image of knot diagram is generated by the software "Draw programme" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm\#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
 ${ }^{2}$ All coefficients of polynomials are rational numbers. But the coetficients are sometimes approximated in decimal forms when there is not enough margin.

