$11a_{174}$ (K11 a_{174})

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{39} - u^{38} + \dots + 2u^3 - 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 39 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^{2}}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{39} - u^{38} + \dots + 2u^3 - 1 \rangle$$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0\\u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1\\u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u\\u^{3}+u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{3}\\u^{5}+u^{3}+u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{6}-u^{4}+1\\-u^{8}-2u^{6}-2u^{4} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{3}\\u^{3}+u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{6}-u^{4}+1\\u^{6}+2u^{4}+u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{9}+2u^{7}+u^{5}-2u^{3}-u\\-u^{9}-3u^{7}-3u^{5}+u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{23}+6u^{21}+\cdots+6u^{5}+2u\\-u^{23}-7u^{21}+\cdots-3u^{5}+v\\u^{38}-u^{37}+\cdots+u+1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{37}+10u^{35}+\cdots+2u^{3}-u\\u^{38}-u^{37}+\cdots+u+1 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes

(iii) Cusp shapes $= -4u^{37} + 4u^{36} - 44u^{35} + 40u^{34} - 228u^{33} + 192u^{32} - 708u^{31} + 556u^{30} - 1396u^{29} + 1024u^{28} - 1636u^{27} + 1100u^{26} - 628u^{25} + 284u^{24} + 1308u^{23} - 1084u^{22} + 2424u^{21} - 1760u^{20} + 1512u^{19} - 1012u^{18} - 320u^{17} + 300u^{16} - 1080u^{15} + 804u^{14} - 528u^{13} + 396u^{12} + 92u^{11} - 44u^{10} + 132u^9 - 92u^8 - 16u^7 - 12u^6 - 36u^5 + 8u^4 + 4u^3 + 4u^2 + 4u + 2$

Crossings	u-Polynomials at each crossing
c_{1}, c_{6}	$u^{39} - u^{38} + \dots + 2u - 1$
<i>c</i> ₂	$u^{39} + 17u^{38} + \dots + 2u^2 + 1$
c_3, c_5, c_7 c_8	$u^{39} + u^{38} + \dots + 14u - 1$
c_4, c_9	$u^{39} - u^{38} + \dots + 2u^3 - 1$
c_{10}	$u^{39} - 23u^{38} + \dots - 2u^2 + 1$
c ₁₁	$u^{39} - 3u^{38} + \dots - 14u + 3$

(iv) u-Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_{1}, c_{6}	$y^{39} - 17y^{38} + \dots - 2y^2 - 1$
<i>c</i> ₂	$y^{39} + 11y^{38} + \dots - 4y - 1$
c_3, c_5, c_7 c_8	$y^{39} - 49y^{38} + \dots + 96y - 1$
c_4, c_9	$y^{39} + 23y^{38} + \dots + 2y^2 - 1$
c_{10}	$y^{39} - 13y^{38} + \dots + 4y - 1$
c_{11}	$y^{39} - 5y^{38} + \dots + 64y - 9$

(\mathbf{v}) Riley Polynomials at the component

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\operatorname{vol}+\sqrt{-1}CS)$	Cusp shape
u = -0.071922 + 0.993246I	1.71946 + 2.04419I	8.16431 - 3.89320I
u = -0.071922 - 0.993246I	1.71946 - 2.04419I	8.16431 + 3.89320I
u = 0.435411 + 0.809083I	-1.87228 - 5.10221I	-1.97486 + 8.58209I
u = 0.435411 - 0.809083I	-1.87228 + 5.10221I	-1.97486 - 8.58209I
u = -0.909371 + 0.016687I	10.31070 - 1.71289I	5.85984 + 0.15979I
u = -0.909371 - 0.016687I	10.31070 + 1.71289I	5.85984 - 0.15979I
u = 0.908911 + 0.030266I	8.53389 + 7.14392I	3.38402 - 4.70933I
u = 0.908911 - 0.030266I	8.53389 - 7.14392I	3.38402 + 4.70933I
u = -0.411819 + 1.010030I	0.09606 + 2.71206I	0.59234 - 4.52974I
u = -0.411819 - 1.010030I	0.09606 - 2.71206I	0.59234 + 4.52974I
u = 0.880484	4.53816	-0.00697750
u = -0.305665 + 0.802271I	0.32922 + 1.44532I	2.59215 - 4.77277I
u = -0.305665 - 0.802271I	0.32922 - 1.44532I	2.59215 + 4.77277I
u = -0.293342 + 1.133220I	3.74981 - 2.16888I	7.25820 + 2.13079I
u = -0.293342 - 1.133220I	3.74981 + 2.16888I	7.25820 - 2.13079I
u = 0.342277 + 1.124620I	5.04615 - 2.65347I	9.41633 + 3.85440I
u = 0.342277 - 1.124620I	5.04615 + 2.65347I	9.41633 - 3.85440I
u = 0.429374 + 1.097570I	4.38863 - 4.56519I	7.75323 + 4.92219I
u = 0.429374 - 1.097570I	4.38863 + 4.56519I	7.75323 - 4.92219I
u = -0.464708 + 1.087840I	2.47286 + 9.36763I	4.01171 - 9.56282I
u = -0.464708 - 1.087840I	2.47286 - 9.36763I	4.01171 + 9.56282I
u = 0.415674 + 0.642054I	-2.32655 + 1.37512I	-4.12538 - 0.53412I
u = 0.415674 - 0.642054I	-2.32655 - 1.37512I	-4.12538 + 0.53412I
u = -0.632416 + 0.199765I	-0.01291 - 5.16822I	0.66391 + 6.04707I
u = -0.632416 - 0.199765I	-0.01291 + 5.16822I	0.66391 - 6.04707I
u = 0.467898 + 1.254570I	8.33752 - 4.79855I	3.23494 + 3.06059I
u = 0.467898 - 1.254570I	8.33752 + 4.79855I	3.23494 - 3.06059I
u = 0.454344 + 1.275250I	12.54280 + 2.32319I	6.85027 - 1.71176I
u = 0.454344 - 1.275250I	12.54280 - 2.32319I	6.85027 + 1.71176I
u = 0.488216 + 1.263380I	12.2898 - 12.1343I	$6.\overline{37996} + 7.62883I$

Solutions to I_1^u	$\sqrt{-1}(\operatorname{vol}+\sqrt{-1}CS)$	Cusp shape
u = 0.488216 - 1.263380I	12.2898 + 12.1343I	6.37996 - 7.62883I
u = -0.462613 + 1.273220I	14.2633 + 3.1512I	9.14562 - 2.87617I
u = -0.462613 - 1.273220I	14.2633 - 3.1512I	9.14562 + 2.87617I
u = -0.481297 + 1.266520I	14.1233 + 6.6701I	8.91783 - 3.16828I
u = -0.481297 - 1.266520I	14.1233 - 6.6701I	8.91783 + 3.16828I
u = 0.599274 + 0.105705I	1.67499 + 0.65150I	4.60786 - 0.90927I
u = 0.599274 - 0.105705I	1.67499 - 0.65150I	4.60786 + 0.90927I
u = -0.448469 + 0.341157I	-1.70724 + 0.92516I	-3.72881 - 0.98147I
u = -0.448469 - 0.341157I	-1.70724 - 0.92516I	-3.72881 + 0.98147I

Crossings	u-Polynomials at each crossing
c_{1}, c_{6}	$u^{39} - u^{38} + \dots + 2u - 1$
<i>C</i> ₂	$u^{39} + 17u^{38} + \dots + 2u^2 + 1$
c_3, c_5, c_7 c_8	$u^{39} + u^{38} + \dots + 14u - 1$
c_4, c_9	$u^{39} - u^{38} + \dots + 2u^3 - 1$
c_{10}	$u^{39} - 23u^{38} + \dots - 2u^2 + 1$
c_{11}	$u^{39} - 3u^{38} + \dots - 14u + 3$

II. u-Polynomials

III.	Riley	Polyno	mials
------	-------	--------	-------

Crossings	Riley Polynomials at each crossing
c_{1}, c_{6}	$y^{39} - 17y^{38} + \dots - 2y^2 - 1$
c_2	$y^{39} + 11y^{38} + \dots - 4y - 1$
c_3, c_5, c_7 c_8	$y^{39} - 49y^{38} + \dots + 96y - 1$
c_4, c_9	$y^{39} + 23y^{38} + \dots + 2y^2 - 1$
C ₁₀	$y^{39} - 13y^{38} + \dots + 4y - 1$
c_{11}	$y^{39} - 5y^{38} + \dots + 64y - 9$