$11a_{184}$ (K11 a_{184})

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{43} - u^{42} + \dots - u^2 + 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 43 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATSTAILs/LinksPainter).

 $^{^{2}}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{43} - u^{42} + \dots - u^2 + 1 \rangle$$

(i) Arc colorings

$$\begin{aligned} a_{1} &= \begin{pmatrix} 1\\ 0 \end{pmatrix} \\ a_{7} &= \begin{pmatrix} 0\\ u \end{pmatrix} \\ a_{2} &= \begin{pmatrix} 1\\ -u^{2} \end{pmatrix} \\ a_{3} &= \begin{pmatrix} u^{2}+1\\ -u^{2} \end{pmatrix} \\ a_{8} &= \begin{pmatrix} -u^{5}-2u^{3}-u\\ u^{5}+u^{3}+u \end{pmatrix} \\ a_{6} &= \begin{pmatrix} -u\\ u^{3}+u \end{pmatrix} \\ a_{11} &= \begin{pmatrix} -u\\ -u^{6}-2u^{4}-u^{2} \end{pmatrix} \\ a_{4} &= \begin{pmatrix} -u^{12}-3u^{10}-5u^{8}-4u^{6}-2u^{4}+u^{2}+1\\ u^{14}+4u^{12}+7u^{10}+6u^{8}+2u^{6}-u^{2} \end{pmatrix} \\ a_{9} &= \begin{pmatrix} -u^{31}-8u^{29}+\dots-12u^{7}-4u^{5}\\ u^{33}+9u^{31}+\dots+4u^{7}+u \end{pmatrix} \\ a_{10} &= \begin{pmatrix} u^{16}+5u^{14}+11u^{12}+12u^{10}+5u^{8}-2u^{6}-2u^{4}+1\\ -u^{16}-4u^{14}-8u^{12}-8u^{10}-4u^{8} \end{pmatrix} \\ a_{5} &= \begin{pmatrix} -u^{35}-10u^{33}+\dots-u^{3}-2u\\ u^{35}+9u^{33}+\dots+u^{3}+u \end{pmatrix} \\ a_{5} &= \begin{pmatrix} -u^{35}-10u^{33}+\dots-u^{3}-2u\\ u^{35}+9u^{33}+\dots+u^{3}+u \end{pmatrix} \end{aligned}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes = $-4u^{41} + 4u^{40} - 44u^{39} + 44u^{38} - 236u^{37} + 240u^{36} - 796u^{35} + 832u^{34} - 1848u^{33} + 2004u^{32} - 3040u^{31} + 3444u^{30} - 3480u^{29} + 4132u^{28} - 2468u^{27} + 3044u^{26} - 428u^{25} + 452u^{24} + 1264u^{23} - 1860u^{22} + 1600u^{21} - 2240u^{20} + 824u^{19} - 920u^{18} - 84u^{17} + 456u^{16} - 464u^{15} + 772u^{14} - 336u^{13} + 332u^{12} - 72u^{11} - 72u^{10} + 76u^9 - 136u^8 + 68u^7 - 44u^6 + 16u^5 + 8u^4 - 8u^3 + 8u^2 - 4u + 2$

Crossings	u-Polynomials at each crossing
c_{1}, c_{6}	$u^{43} + u^{42} + \dots + u^2 - 1$
<i>c</i> ₂	$u^{43} + 23u^{42} + \dots + 2u - 1$
<i>C</i> 3	$u^{43} - 5u^{42} + \dots - 2u + 5$
c_4, c_5, c_8 c_9	$u^{43} + u^{42} + \dots + u^2 - 1$
c_7, c_{11}	$u^{43} - u^{42} + \dots - 5u - 2$
c_{10}	$u^{43} + 11u^{42} + \dots + 12u + 1$

(iv) u-Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_{1}, c_{6}	$y^{43} + 23y^{42} + \dots + 2y - 1$
c_2	$y^{43} - 5y^{42} + \dots + 14y - 1$
<i>C</i> 3	$y^{43} + 7y^{42} + \dots - 926y - 25$
c_4, c_5, c_8 c_9	$y^{43} - 49y^{42} + \dots + 2y - 1$
c_7, c_{11}	$y^{43} - 33y^{42} + \dots + 125y - 4$
c_{10}	$y^{43} - y^{42} + \dots - 18y - 1$

(\mathbf{v}) Riley Polynomials at the component

(vi)	Complex	Volumes	and	Cusp	Shapes	

Solutions to I_1^u	$\sqrt{-1}(\operatorname{vol}+\sqrt{-1}CS)$	Cusp shape
u = 0.521315 + 0.837611I	1.91297 + 4.88049I	7.17506 - 8.80545I
u = 0.521315 - 0.837611I	1.91297 - 4.88049I	7.17506 + 8.80545I
u = -0.564675 + 0.846085I	9.73939 - 6.81501I	9.15243 + 6.58080I
u = -0.564675 - 0.846085I	9.73939 + 6.81501I	9.15243 - 6.58080I
u = -0.070971 + 0.949282I	-1.88710 - 1.49301I	-2.49179 + 5.12316I
u = -0.070971 - 0.949282I	-1.88710 + 1.49301I	-2.49179 - 5.12316I
u = 0.157033 + 1.039100I	4.88985 + 3.07247I	2.04876 - 3.22790I
u = 0.157033 - 1.039100I	4.88985 - 3.07247I	2.04876 + 3.22790I
u = -0.443218 + 0.795583I	0.18390 - 1.87415I	2.36398 + 3.86442I
u = -0.443218 - 0.795583I	0.18390 + 1.87415I	2.36398 - 3.86442I
u = -0.578652 + 0.674431I	10.22700 + 2.27386I	10.59990 + 0.05953I
u = -0.578652 - 0.674431I	10.22700 - 2.27386I	10.59990 - 0.05953I
u = 0.509969 + 0.679497I	2.36364 - 0.64965I	9.29098 + 1.48220I
u = 0.509969 - 0.679497I	2.36364 + 0.64965I	9.29098 - 1.48220I
u = 0.802703 + 0.162351I	6.46390 - 7.57490I	7.29481 + 4.51486I
u = 0.802703 - 0.162351I	6.46390 + 7.57490I	7.29481 - 4.51486I
u = -0.783539 + 0.138077I	-1.13687 + 5.20298I	4.40416 - 6.22689I
u = -0.783539 - 0.138077I	-1.13687 - 5.20298I	4.40416 + 6.22689I
u = 0.495820 + 1.104130I	6.52652 + 3.46599I	6.43711 - 3.77434I
u = 0.495820 - 1.104130I	6.52652 - 3.46599I	6.43711 + 3.77434I
u = -0.781151	2.55363	4.52390
u = 0.758021 + 0.099035I	-2.34232 - 1.57976I	0.847135 + 0.282398I
u = 0.758021 - 0.099035I	-2.34232 + 1.57976I	0.847135 - 0.282398I
u = -0.463782 + 1.145440I	-1.69075 - 3.98657I	4.72929 + 3.11894I
u = -0.463782 - 1.145440I	-1.69075 + 3.98657I	4.72929 - 3.11894I
u = -0.382526 + 1.197980I	-5.08887 + 1.28085I	0 2.90376I
u = -0.382526 - 1.197980I	-5.08887 - 1.28085I	0. + 2.90376I
u = 0.362492 + 1.206110I	2.33692 - 3.70518I	2.48681 + 1.54084I
u = 0.362492 - 1.206110I	2.33692 + 3.70518I	2.48681 - 1.54084I
u = 0.407336 + 1.191840I	-6.07657 + 2.44102I	-3.16979 - 3.57779I

Solutions to I_1^u	$\sqrt{-1}(\operatorname{vol}+\sqrt{-1}CS)$	Cusp shape
u = 0.407336 - 1.191840I	-6.07657 - 2.44102I	-3.16979 + 3.57779I
u = -0.448865 + 1.200600I	-0.96199 - 4.39851I	0. + 3.54146I
u = -0.448865 - 1.200600I	-0.96199 + 4.39851I	0 3.54146I
u = 0.490454 + 1.184460I	-5.48574 + 6.18515I	-2.04828 - 3.59368I
u = 0.490454 - 1.184460I	-5.48574 - 6.18515I	-2.04828 + 3.59368I
u = 0.645564 + 0.300310I	8.84662 + 0.96374I	10.02944 - 0.37589I
u = 0.645564 - 0.300310I	8.84662 - 0.96374I	10.02944 + 0.37589I
u = -0.507296 + 1.186730I	-4.20932 - 9.96665I	0. + 9.16746I
u = -0.507296 - 1.186730I	-4.20932 + 9.96665I	0 9.16746I
u = 0.519799 + 1.187960I	3.43954 + 12.44990I	4.17518 - 7.63100I
u = 0.519799 - 1.187960I	3.43954 - 12.44990I	4.17518 + 7.63100I
u = -0.536405 + 0.171930I	1.103730 - 0.098765I	9.44099 + 0.91027I
u = -0.536405 - 0.171930I	1.103730 + 0.098765I	9.44099 - 0.91027I

Crossings	u-Polynomials at each crossing
c_{1}, c_{6}	$u^{43} + u^{42} + \dots + u^2 - 1$
<i>c</i> ₂	$u^{43} + 23u^{42} + \dots + 2u - 1$
<i>C</i> 3	$u^{43} - 5u^{42} + \dots - 2u + 5$
c_4, c_5, c_8 c_9	$u^{43} + u^{42} + \dots + u^2 - 1$
c_7, c_{11}	$u^{43} - u^{42} + \dots - 5u - 2$
c_{10}	$u^{43} + 11u^{42} + \dots + 12u + 1$

II. u-Polynomials

III.	Riley	Polynoi	mials
------	-------	---------	-------

Crossings	Riley Polynomials at each crossing
c_{1}, c_{6}	$y^{43} + 23y^{42} + \dots + 2y - 1$
c_2	$y^{43} - 5y^{42} + \dots + 14y - 1$
<i>C</i> 3	$y^{43} + 7y^{42} + \dots - 926y - 25$
c_4, c_5, c_8 c_9	$y^{43} - 49y^{42} + \dots + 2y - 1$
c_{7}, c_{11}	$y^{43} - 33y^{42} + \dots + 125y - 4$
c_{10}	$y^{43} - y^{42} + \dots - 18y - 1$