
$5_2 (K5a_1)$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^3 - u^2 + 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 3 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^3 - u^2 + 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{2} + 1 \\ -u^{2} + u + 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_4 = \begin{pmatrix} a \\ u \end{pmatrix}$$

$$a_4 = \begin{pmatrix} u \\ u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = 4u 6

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_3, c_5	$u^3 + u^2 + 2u + 1$
c_2, c_4	$u^3 - u^2 + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_5	$y^3 + 3y^2 + 2y - 1$
c_2, c_4	$y^3 - y^2 + 2y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.877439 + 0.744862I	3.02413 - 2.82812I	-2.49024 + 2.97945I
u = 0.877439 - 0.744862I	3.02413 + 2.82812I	-2.49024 - 2.97945I
u = -0.754878	-1.11345	-9.01950

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_3, c_5	$u^3 + u^2 + 2u + 1$
c_2, c_4	$u^3 - u^2 + 1$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1,c_3,c_5	$y^3 + 3y^2 + 2y - 1$
c_2, c_4	$y^3 - y^2 + 2y - 1$