
$6_1 \ (K6a_3)$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^4 + u^3 + u^2 + 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 4 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^4 + u^3 + u^2 + 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{3} \\ u^{3} + u^{2} + 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^2 4u 2$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_3, c_4 c_6	$u^4 + u^3 + 3u^2 + 2u + 1$
c_2,c_5	$u^4 + u^3 + u^2 + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_4 c_6	$y^4 + 5y^3 + 7y^2 + 2y + 1$
c_2, c_5	$y^4 + y^3 + 3y^2 + 2y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.351808 + 0.720342I	-0.21101 + 1.41510I	-1.82674 - 4.90874I
u = 0.351808 - 0.720342I	-0.21101 - 1.41510I	-1.82674 + 4.90874I
u = -0.851808 + 0.911292I	6.79074 - 3.16396I	1.82674 + 2.56480I
u = -0.851808 - 0.911292I	6.79074 + 3.16396I	1.82674 - 2.56480I

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_3, c_4 c_6	$u^4 + u^3 + 3u^2 + 2u + 1$
c_2, c_5	$u^4 + u^3 + u^2 + 1$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_4 c_6	$y^4 + 5y^3 + 7y^2 + 2y + 1$
c_2, c_5	$y^4 + y^3 + 3y^2 + 2y + 1$