$9_{38} (K9a_{30})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -u^{10} - 2u^9 - 5u^8 - 11u^7 - 14u^6 - 20u^5 - 23u^4 - 16u^3 - 13u^2 + 4b - 4u + 1, \\ & u^{10} + 2u^9 + 5u^8 + 11u^7 + 10u^6 + 12u^5 + 15u^4 - 7u^2 + 8a - 4u - 9, \\ & u^{11} + u^{10} + 3u^9 + 6u^8 + 7u^7 + 10u^6 + 11u^5 + 9u^4 + 9u^3 + 3u^2 + 3u + 1 \rangle \\ I_2^u &= \langle 20020u^{17} - 48508u^{16} + \dots + 11959b - 19142, \ -16736u^{17} + 49970u^{16} + \dots + 11959a - 645, \\ & u^{18} - 3u^{17} + \dots - 2u + 1 \rangle \\ I_3^u &= \langle b + 1, \ 2a + 1, \ u - 1 \rangle \end{split}$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 30 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^{2}}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$\begin{aligned} \mathbf{I}.\\ \mathbf{I}_{1}^{u} &= \langle -u^{10} - 2u^{9} + \dots + 4b + 1, \ u^{10} + 2u^{9} + \dots + 8a - 9, \ u^{11} + u^{10} + \dots + 3u + 1 \rangle \end{aligned}$$
(i) Arc colorings
$$a_{5} &= \begin{pmatrix} 1\\ 0 \end{pmatrix} \\a_{9} &= \begin{pmatrix} 0\\ u \end{pmatrix} \\a_{3} &= \begin{pmatrix} -\frac{1}{8}u^{10} - \frac{1}{4}u^{9} + \dots + \frac{1}{2}u + \frac{9}{8} \\\frac{1}{4}u^{10} + \frac{1}{2}u^{9} + \dots + u - \frac{1}{4} \end{pmatrix} \\a_{6} &= \begin{pmatrix} 1\\ u^{2} \end{pmatrix} \\a_{7} &= \begin{pmatrix} -\frac{1}{16}u^{10} - \frac{1}{8}u^{9} + \dots - \frac{7}{4}u + \frac{16}{16} \\-\frac{1}{8}u^{10} + \frac{1}{4}u^{9} + \dots + \frac{3}{2}u + \frac{7}{8} \end{pmatrix} \\a_{2} &= \begin{pmatrix} \frac{1}{8}u^{10} + \frac{1}{4}u^{9} + \dots + \frac{3}{2}u + \frac{7}{8} \\\frac{1}{4}u^{10} + \frac{1}{2}u^{9} + \dots + u - \frac{1}{4} \end{pmatrix} \\a_{1} &= \begin{pmatrix} \frac{1}{16}u^{10} + \frac{1}{8}u^{9} + \dots + \frac{7}{4}u + \frac{15}{16} \\\frac{1}{8}u^{10} + \frac{3}{4}u^{9} + \dots + \frac{5}{2}u + \frac{13}{8} \end{pmatrix} \\a_{4} &= \begin{pmatrix} \frac{3}{8}u^{10} + \frac{3}{2}u^{9} + \dots + u - \frac{1}{4} \end{pmatrix} \\a_{8} &= \begin{pmatrix} u\\ u^{3} + u \end{pmatrix} \\a_{8} &= \begin{pmatrix} u\\ u^{3} + u \end{pmatrix} \end{aligned}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes = $-\frac{27}{16}u^{10} + \frac{13}{8}u^9 - \frac{23}{16}u^8 - \frac{41}{16}u^7 + \frac{37}{8}u^6 + \frac{7}{4}u^5 - \frac{13}{16}u^4 + 7u^3 - \frac{3}{16}u^2 + \frac{31}{4}u - \frac{181}{16}u^6$

Crossings	u-Polynomials at each crossing		
c_1, c_5, c_7 c_8	$u^{11} + u^{10} + 3u^9 + 6u^8 + 7u^7 + 10u^6 + 11u^5 + 9u^4 + 9u^3 + 3u^2 + 3u + 3u^4 + 9u^4 + 9u^$		
c_2, c_4	$u^{11} - 3u^9 + u^8 + 4u^7 - 2u^6 - u^5 + 10u^4 - 5u^3 - 16u^2 + 9u + 4$		
c_3	$u^{11} - 3u^{10} + \dots - 6u + 8$		
c_{6}, c_{9}	$2(2u^{11} + u^{10} - 3u^8 + 11u^7 + 2u^6 - 14u^5 + 7u^4 + 6u^3 - 5u^2 + 1)$		

(iv) u-Polynomials at the component

Crossings	Riley Polynomials at each crossing		
c_1, c_5, c_7 c_8	$y^{11} + 5y^{10} + 11y^9 + 8y^8 - 5y^7 + 47y^5 + 87y^4 + 73y^3 + 27y^2 + 3y - 1$		
c_2, c_4	$y^{11} - 6y^{10} + \dots + 209y - 16$		
<i>C</i> ₃	$y^{11} + 3y^{10} + \dots + 52y - 64$		
c_{6}, c_{9}	$4(4y^{11} - y^{10} + \dots + 10y - 1)$		

(\mathbf{v}) Riley Polynomials at the component

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\operatorname{vol}+\sqrt{-1}CS)$	Cusp shape
u = -0.361784 + 0.962924I		
a = 0.42885 - 1.90311I	0.53843 + 4.57539I	-8.21994 - 7.99945I
b = -1.019420 + 0.904921I		
u = -0.361784 - 0.962924I		
a = 0.42885 + 1.90311I	0.53843 - 4.57539I	-8.21994 + 7.99945I
b = -1.019420 - 0.904921I		
u = -1.186630 + 0.355210I		
a = 0.360998 + 0.003803I	-3.44203 - 0.72668I	-9.61068 + 7.91738I
b = 0.988348 + 0.222965I		
u = -1.186630 - 0.355210I		
a = 0.360998 - 0.003803I	-3.44203 + 0.72668I	-9.61068 - 7.91738I
b = 0.988348 - 0.222965I		
u = 0.256965 + 0.681325I		
a = 0.565680 + 0.993565I	-1.48009 - 1.36667I	-10.72983 + 4.40179I
b = -1.41820 - 0.12736I		
u = 0.256965 - 0.681325I		
a = 0.565680 - 0.993565I	-1.48009 + 1.36667I	-10.72983 - 4.40179I
b = -1.41820 + 0.12736I		
u = 0.391610 + 1.210140I		
a = -0.57189 + 1.31384I	6.41512 - 6.30680I	-3.61485 + 5.61897I
b = 0.308687 - 1.224930I		
u = 0.391610 - 1.210140I		
a = -0.57189 - 1.31384I	6.41512 + 6.30680I	-3.61485 - 5.61897I
b = 0.308687 + 1.224930I		
u = 0.57851 + 1.29417I		
a = -0.05089 - 1.59336I	3.25113 - 12.93290I	-6.73085 + 7.81031I
b = 1.29294 + 0.67490I		
u = 0.57851 - 1.29417I		
a = -0.05089 + 1.59336I	3.25113 + 12.93290I	-6.73085 - 7.81031I
b = 1.29294 - 0.67490I		

Solutions to I_1^u	$\sqrt{-1}(\operatorname{vol}+\sqrt{-1}CS)$	Cusp shape
u = -0.357337		
a = 1.03450	-0.695510	-14.4380
b = -0.304704		

II.
$$I_2^u = \langle 20020u^{17} - 48508u^{16} + \dots + 11959b - 19142, -16736u^{17} + 49970u^{16} + \dots + 11959a - 645, u^{18} - 3u^{17} + \dots - 2u + 1 \rangle$$

(i) Arc colorings $a_{5} = \begin{pmatrix} 1\\ 0 \end{pmatrix}$ $a_{9} = \begin{pmatrix} 0\\ u \end{pmatrix}$ $a_{3} = \begin{pmatrix} 1.39945u^{17} - 4.17844u^{16} + \dots + 1.61753u + 0.0539343 \\ -1.67405u^{17} + 4.05619u^{16} + \dots - 1.50280u + 1.60064 \end{pmatrix}$ $a_{6} = \begin{pmatrix} 1\\ u^{2} \end{pmatrix}$ $a_{7} = \begin{pmatrix} -0.146501u^{17} + 0.631491u^{16} + \dots - 2.98386u + 4.22619 \\ -0.318087u^{17} + 1.15194u^{16} + \dots - 0.807425u - 0.186972 \end{pmatrix}$ $a_{2} = \begin{pmatrix} -0.274605u^{17} - 0.122251u^{16} + \dots + 0.114725u + 1.65457 \\ -1.67405u^{17} + 4.05619u^{16} + \dots - 1.50280u + 1.60064 \end{pmatrix}$ $a_{1} = \begin{pmatrix} -3.02350u^{17} + 9.06932u^{16} + \dots - 5.85985u + 4.11447 \\ -1.51769u^{17} + 3.28171u^{16} + \dots + 1.19801u + 0.319257 \end{pmatrix}$ $a_{4} = \begin{pmatrix} 2.04465u^{17} - 5.56234u^{16} + \dots + 1.85467u - 1.18196 \\ -0.318087u^{17} + 1.15194u^{16} + \dots - 0.807425u - 0.186972 \end{pmatrix}$ $a_{8} = \begin{pmatrix} u\\ u^{3} + u \end{pmatrix}$ (ii) Obstruction class = -1

(iii) Cusp Shapes $= \frac{35580}{11959}u^{17} - \frac{72112}{11959}u^{16} + \dots + \frac{57268}{11959}u - \frac{174278}{11959}u^{16}$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing		
c_1, c_5, c_7 c_8	$u^{18} - 3u^{17} + \dots - 2u + 1$		
c_2, c_4	$(u^9 - u^8 - 2u^7 + 3u^6 + u^5 - 3u^4 + 2u^3 - u + 1)^2$		
<i>C</i> ₃	$(u^9 + u^8 + 2u^7 + u^6 + 3u^5 + u^4 + 2u^3 + u - 1)^2$		
c_6, c_9	$u^{18} - 3u^{17} + \dots + 4u + 11$		

(v) Riley Polynomials at the component	
--	--

Crossings	Riley Polynomials at each crossing		
c_1, c_5, c_7 c_8	$y^{18} + 11y^{17} + \dots + 14y^2 + 1$		
c_2, c_4	$(y^9 - 5y^8 + 12y^7 - 15y^6 + 9y^5 + y^4 - 4y^3 + 2y^2 + y - 1)^2$		
<i>C</i> ₃	$(y^9 + 3y^8 + 8y^7 + 13y^6 + 17y^5 + 17y^4 + 12y^3 + 6y^2 + y - 1)^2$		
c_{6}, c_{9}	$y^{18} + 7y^{17} + \dots + 1260y + 121$		

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\operatorname{vol}+\sqrt{-1}CS)$	Cusp shape
u = -0.131255 + 1.025520I		
a = 2.21228 - 3.01855I	2.09142	-12.65235 + 0.I
b = -0.825933		
u = -0.131255 - 1.025520I		
a = 2.21228 + 3.01855I	2.09142	-12.65235 + 0.I
b = -0.825933		
u = 1.068960 + 0.157811I		
a = 0.330746 + 0.183937I	-0.30826 + 7.08493I	-9.57680 - 5.91335I
b = 1.172470 - 0.500383I		
u = 1.068960 - 0.157811I		
a = 0.330746 - 0.183937I	-0.30826 - 7.08493I	-9.57680 + 5.91335I
b = 1.172470 + 0.500383I		
u = 0.255037 + 0.861194I		
a = 0.31995 + 1.69908I	-1.08148 - 1.33617I	-11.28409 + 0.70175I
b = -1.173910 - 0.391555I		
u = 0.255037 - 0.861194I		
a = 0.31995 - 1.69908I	-1.08148 + 1.33617I	-11.28409 - 0.70175I
b = -1.173910 + 0.391555I		
u = -0.287150 + 1.197360I		
a = -0.077942 - 1.012210I	2.67293 + 2.45442I	-6.32792 - 2.91298I
b = 0.141484 + 0.739668I		
u = -0.287150 - 1.197360I		
a = -0.077942 + 1.012210I	2.67293 - 2.45442I	-6.32792 + 2.91298I
b = 0.141484 - 0.739668I		
u = 0.605058 + 1.127080I		
a = 0.639032 - 1.048120I	5.07330 - 2.09337I	-3.48501 + 4.16283I
b = 0.772920 + 0.510351I		
u = 0.605058 - 1.127080I		
a = 0.639032 + 1.048120I	5.07330 + 2.09337I	-3.48501 - 4.16283I
b = 0.772920 - 0.510351I		

Solutions to I_2^u	$\sqrt{-1}(\operatorname{vol}+\sqrt{-1}CS)$	Cusp shape
u = 0.658024 + 0.097431I		
a = 0.910679 + 0.215358I	2.67293 - 2.45442I	-6.32792 + 2.91298I
b = 0.141484 - 0.739668I		
u = 0.658024 - 0.097431I		
a = 0.910679 - 0.215358I	2.67293 + 2.45442I	-6.32792 - 2.91298I
b = 0.141484 + 0.739668I		
u = -0.62758 + 1.28014I		
a = 0.023182 + 1.259910I	-0.30826 + 7.08493I	-9.57680 - 5.91335I
b = 1.172470 - 0.500383I		
u = -0.62758 - 1.28014I		
a = 0.023182 - 1.259910I	-0.30826 - 7.08493I	-9.57680 + 5.91335I
b = 1.172470 + 0.500383I		
u = 0.31006 + 1.39846I		
a = -0.515395 + 0.355009I	5.07330 + 2.09337I	-3.48501 - 4.16283I
b = 0.772920 - 0.510351I		
u = 0.31006 - 1.39846I		
a = -0.515395 - 0.355009I	5.07330 - 2.09337I	-3.48501 + 4.16283I
b = 0.772920 + 0.510351I		
u = -0.351155 + 0.305986I		
a = 1.157480 - 0.200845I	-1.08148 - 1.33617I	-11.28409 + 0.70175I
b = -1.173910 - 0.391555I		
u = -0.351155 - 0.305986I		
a = 1.157480 + 0.200845I	-1.08148 + 1.33617I	-11.28409 - 0.70175I
b = -1.173910 + 0.391555I		

III.
$$I_3^u = \langle b+1, \ 2a+1, \ u-1 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 1\\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0\\ 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -0.5\\ -1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1\\ 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1.25\\ 1.5 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -1.5\\ -1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -0.25\\ 0.5 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -0.5\\ -1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1\\ 2 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1\\ 2 \end{pmatrix}$$

(ii) Obstruction class = 1

(iii) Cusp Shapes = -9.75

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_4, c_8	u+1
c_2, c_5, c_7	u-1
<i>C</i> ₃	u
<i>c</i> ₆	2(2u+1)
<i>C</i> 9	2(2u-1)

(\mathbf{v}) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4 c_5, c_7, c_8	y-1
c_3	y
c_{6}, c_{9}	4(4y-1)

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\mathrm{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = -0.500000	-3.28987	-9.75000
b = -1.00000		

Crossings	u-Polynomials at each crossing
c_{1}, c_{8}	$(u+1) (u^{11} + u^{10} + 3u^9 + 6u^8 + 7u^7 + 10u^6 + 11u^5 + 9u^4 + 9u^3 + 3u^2 + 3u + 1) (u^{18} - 3u^{17} + \dots - 2u + 1)$
c_2	$(u-1)(u^9 - u^8 - 2u^7 + 3u^6 + u^5 - 3u^4 + 2u^3 - u + 1)^2$ $\cdot (u^{11} - 3u^9 + u^8 + 4u^7 - 2u^6 - u^5 + 10u^4 - 5u^3 - 16u^2 + 9u + 4)$
<i>c</i> ₃	$u(u^9 + u^8 + 2u^7 + u^6 + 3u^5 + u^4 + 2u^3 + u - 1)^2$ $\cdot (u^{11} - 3u^{10} + \dots - 6u + 8)$
c_4	$(u+1)(u^9 - u^8 - 2u^7 + 3u^6 + u^5 - 3u^4 + 2u^3 - u + 1)^2$ $\cdot (u^{11} - 3u^9 + u^8 + 4u^7 - 2u^6 - u^5 + 10u^4 - 5u^3 - 16u^2 + 9u + 4)$
c_{5}, c_{7}	$(u-1)$ $\cdot (u^{11} + u^{10} + 3u^9 + 6u^8 + 7u^7 + 10u^6 + 11u^5 + 9u^4 + 9u^3 + 3u^2 + 3u + 1)$ $\cdot (u^{18} - 3u^{17} + \dots - 2u + 1)$
<i>c</i> ₆	$4(2u+1)(2u^{11}+u^{10}+\dots-5u^2+1)$ $\cdot (u^{18}-3u^{17}+\dots+4u+11)$
<i>C</i> 9	$4(2u-1)(2u^{11}+u^{10}+\dots-5u^2+1)$ $\cdot (u^{18}-3u^{17}+\dots+4u+11)$

IV. u-Polynomials

v. Riley Polynomials
\mathbf{V} RUAV POLVNOMISI

Crossings	Riley Polynomials at each crossing
c_1, c_5, c_7 c_8	$(y-1) \cdot (y^{11} + 5y^{10} + 11y^9 + 8y^8 - 5y^7 + 47y^5 + 87y^4 + 73y^3 + 27y^2 + 3y - 1) \cdot (y^{18} + 11y^{17} + \dots + 14y^2 + 1)$
c_2, c_4	$(y-1)(y^9 - 5y^8 + 12y^7 - 15y^6 + 9y^5 + y^4 - 4y^3 + 2y^2 + y - 1)^2$ $\cdot (y^{11} - 6y^{10} + \dots + 209y - 16)$
c_3	$y(y^9 + 3y^8 + 8y^7 + 13y^6 + 17y^5 + 17y^4 + 12y^3 + 6y^2 + y - 1)^2$ $\cdot (y^{11} + 3y^{10} + \dots + 52y - 64)$
c_{6}, c_{9}	$16(4y-1)(4y^{11}-y^{10}+\dots+10y-1)(y^{18}+7y^{17}+\dots+1260y+121)$