$11n_{143}$ (K11 n_{143})

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle 27169327131u^{12} - 4728521972u^{11} + \dots + 163375109309b + 102043710068, \\ &\quad 46748483168u^{12} - 1185808565u^{11} + \dots + 163375109309a - 246903703505, \\ &\quad u^{13} - u^{12} - 16u^{11} + 13u^{10} + 93u^9 - 90u^8 + 85u^7 - 4u^6 + 11u^5 - 20u^4 + 2u^2 + u - 1 \rangle \\ I_2^u &= \langle 3u^8 - 5u^6 - u^5 - 7u^4 - 6u^3 + b - 3u + 2, \ -2u^8 + u^7 + 3u^6 - u^5 + 4u^4 + 3u^3 - u^2 + a + 2u - 1, \\ &\quad u^9 - u^7 - 3u^5 - 3u^4 - 2u^3 - 3u^2 - u - 1 \rangle \end{split}$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 22 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^{2}}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

 $\begin{matrix} \text{I.} \\ I_1^u = \langle 2.72 \times 10^{10} u^{12} - 4.73 \times 10^9 u^{11} + \dots + 1.63 \times 10^{11} b + 1.02 \times 10^{11}, \ 4.67 \times 10^{10} u^{12} - 1.19 \times 10^9 u^{11} + \dots + 1.63 \times 10^{11} a - 2.47 \times 10^{11}, \ u^{13} - u^{12} + \dots + u - 1 \rangle \end{matrix}$

(i) Arc colorings $a_4 =$ $a_{10} =$ $a_{9} =$ $-0.286142u^{12} + 0.00725820u^{11} + \dots + 0.326465u + 1.51127 \\ -0.166300u^{12} + 0.0289427u^{11} + \dots - 0.0380012u - 0.624598$ $a_1 =$ $a_{3} =$ $-1.45178u^{12} + 1.36239u^{11} + \dots - 1.27398u - 1.38184$ $0.0325056u^{12} + 0.182051u^{11} + \dots - 1.79766u - 0.0596779$ $a_2 =$ $-0.286142u^{12} + 0.00725820u^{11} + \dots + 0.326465u + 1.51127$ $-0.0919107u^{12} + 0.0169286u^{11} + \dots - 0.0307430u - 0.345714$ $a_{11} =$ $\underbrace{(1.39226u^{12} - 1.21256u^{11} + \dots - 1.08841u + 1.29245)}_{(0.0595160u^{12} - 0.149831u^{11} + \dots + 2.36239u + 0.0893943)}_{(0.0595160u^{12} - 0.000)}_{(0.0595160u^{12} - 0.000)}}_{(0.0595160u^{12} - 0.$ $a_{5} =$ $\begin{pmatrix} 1.45178u^{12} - 1.36239u^{11} + \dots + 1.27398u + 1.38184 \\ 0.0595160u^{12} - 0.149831u^{11} + \dots + 2.36239u + 0.0893943 \end{pmatrix}$ $a_{6} =$ $0.286142u^{12} - 0.00725820u^{11} + \dots - 0.326465u - 1.51127$ $0.0289310u^{12} + 0.00713908u^{11} + \dots + 0.000702000u + 0.287036$ $a_{7} =$ $\begin{array}{c} 0.0893943u^{12} - 0.0298782u^{11} + \dots - 0.0699394u + 2.45178 \\ - 0.0903148u^{12} + 0.0234848u^{11} + \dots + 0.0298782u + 0.0595160 \end{array}$ $a_8 =$ $\begin{array}{c} 0.0893943u^{12} - 0.0298782u^{11} + \dots - 0.0699394u + 2.45178 \\ -0.0903148u^{12} + 0.0234848u^{11} + \dots + 0.0298782u + 0.0595160 \end{array}$ $a_{8} =$

(ii) Obstruction class = -1

(iii)	Cusp Shapes					
= -	$\tfrac{425649841644}{163375109309}u^{12} +$	$\frac{257561868150}{163375109309}u^{11} + \cdots$	\cdot +	$\frac{821280596494}{163375109309}u$	_	$\frac{283918679660}{163375109309}$

(iv) u-Polynomials	at the component
-----	-----------------	------------------

Crossings	u-Polynomials at each crossing
c_{1}, c_{6}	$u^{13} - 11u^{12} + \dots - 48u + 16$
<i>c</i> ₂	$u^{13} + 7u^{12} + \dots - 640u + 256$
c_3, c_8, c_9	$u^{13} + u^{12} + \dots + u + 1$
c_4, c_{11}	$u^{13} - 3u^{12} + \dots - 2u + 1$
C5	$u^{13} - 14u^{11} + \dots + 13u + 6$
c_7, c_{10}	$u^{13} - 3u^{12} + \dots + 3u - 1$

Crossings	Riley Polynomials at each crossing
c_{1}, c_{6}	$y^{13} - 7y^{12} + \dots - 640y - 256$
<i>c</i> ₂	$y^{13} + 69y^{12} + \dots - 106496y - 65536$
c_3, c_8, c_9	$y^{13} - 33y^{12} + \dots + 5y - 1$
c_4, c_{11}	$y^{13} + 27y^{12} + \dots - 34y - 1$
C5	$y^{13} - 28y^{12} + \dots - 83y - 36$
c_7, c_{10}	$y^{13} + y^{12} + \dots - y - 1$

(\mathbf{v}) Riley Polynomials at the component

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\operatorname{vol}+\sqrt{-1}CS)$	Cusp shape
u = 0.444507 + 0.873153I		
a = 0.145964 + 0.210434I	-5.13656 + 3.94627I	0.021726 + 1.151779I
b = -0.10255 - 2.20008I		
u = 0.444507 - 0.873153I		
a = 0.145964 - 0.210434I	-5.13656 - 3.94627I	0.021726 - 1.151779I
b = -0.10255 + 2.20008I		
u = -0.278059 + 0.532845I		
a = 0.482522 - 0.330538I	-0.112278 - 1.172770I	-1.56848 + 5.39486I
b = -0.243913 + 0.386628I		
u = -0.278059 - 0.532845I		
a = 0.482522 + 0.330538I	-0.112278 + 1.172770I	-1.56848 - 5.39486I
b = -0.243913 - 0.386628I		
u = 0.581027		
a = 1.33008	-1.77301	-4.59260
b = 0.743719		
u = -0.395821 + 0.255747I		
a = 1.63033 - 1.89256I	3.39477 - 1.45394I	0.239284 + 0.384387I
b = -0.681021 - 0.928853I		
u = -0.395821 - 0.255747I		
a = 1.63033 + 1.89256I	3.39477 + 1.45394I	0.239284 - 0.384387I
b = -0.681021 + 0.928853I		
u = 0.364118 + 0.280685I		
a = 2.64015 + 1.42143I	3.10631 - 4.18292I	3.50367 + 6.73830I
b = -0.470210 + 1.143350I		
u = 0.364118 - 0.280685I		
a = 2.64015 - 1.42143I	3.10631 + 4.18292I	3.50367 - 6.73830I
b = -0.470210 - 1.143350I		
$u = -3.02519 + 1.05\overline{130I}$		
a = 0.060075 + 0.847736I	16.1187 - 1.6452I	-0.771905 + 0.029863I
b = 6.04324 + 4.26131I		

Solutions to I_1^u	$\sqrt{-1}(\operatorname{vol}+\sqrt{-1}CS)$	Cusp shape
u = -3.02519 - 1.05130I		
a = 0.060075 - 0.847736I	16.1187 + 1.6452I	-0.771905 - 0.029863I
b = 6.04324 - 4.26131I		
u = 3.09993 + 0.83578I		
a = -0.124080 + 0.900887I	16.4142 + 9.3138I	-0.62797 - 3.85299I
b = -5.91741 + 5.22009I		
u = 3.09993 - 0.83578I		
a = -0.124080 - 0.900887I	16.4142 - 9.3138I	-0.62797 + 3.85299I
b = -5.91741 - 5.22009I		

II.
$$I_2^u = \langle 3u^8 - 5u^6 - u^5 - 7u^4 - 6u^3 + b - 3u + 2, -2u^8 + u^7 + \dots + a - 1, u^9 - u^7 - 3u^5 - 3u^4 - 2u^3 - 3u^2 - u - 1 \rangle$$

(i) Arc colorings

$$\begin{aligned} a_{4} &= \begin{pmatrix} 0 \\ u \end{pmatrix} \\ a_{10} &= \begin{pmatrix} 1 \\ 0 \end{pmatrix} \\ a_{9} &= \begin{pmatrix} 1 \\ u^{2} \end{pmatrix} \\ a_{1} &= \begin{pmatrix} 2u^{8} - u^{7} - 3u^{6} + u^{5} - 4u^{4} - 3u^{3} + u^{2} - 2u + 1 \\ -3u^{8} + 5u^{6} + u^{5} + 7u^{4} + 6u^{3} + 3u - 2 \end{pmatrix} \\ a_{3} &= \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix} \\ a_{2} &= \begin{pmatrix} -u \\ -3u^{8} + 5u^{6} + u^{5} + 7u^{4} + 6u^{3} + 2u - 2 \end{pmatrix} \\ a_{11} &= \begin{pmatrix} 2u^{8} - u^{7} - 3u^{6} + u^{5} - 4u^{4} - 3u^{3} + u^{2} - 2u + 1 \\ -2u^{8} + 3u^{6} + u^{5} + 5u^{4} + 4u^{3} + 2u - 1 \end{pmatrix} \\ a_{5} &= \begin{pmatrix} 2u^{7} - 4u^{5} - 3u^{3} - 5u^{2} - 2 \\ -u^{7} + 2u^{5} + 2u^{3} + 2u^{2} + 1 \end{pmatrix} \\ a_{6} &= \begin{pmatrix} u^{7} - 2u^{5} - u^{3} - 3u^{2} - 1 \\ -u^{7} + 2u^{5} + 2u^{3} + 2u^{2} + 1 \end{pmatrix} \\ a_{7} &= \begin{pmatrix} -2u^{8} + u^{7} + 3u^{6} - u^{5} + 4u^{4} + 3u^{3} - u^{2} + 2u - 1 \\ 3u^{8} + u^{7} - 4u^{6} - 3u^{5} - 9u^{4} - 8u^{3} - 3u^{2} - 4u + 1 \end{pmatrix} \\ a_{8} &= \begin{pmatrix} -u^{8} + 2u^{6} + u^{4} + 3u^{3} + u + 1 \\ u^{8} - 2u^{6} - 2u^{4} - 2u^{3} + u^{2} - u \end{pmatrix} \\ a_{8} &= \begin{pmatrix} -u^{8} + 2u^{6} + u^{4} + 3u^{3} + u + 1 \\ u^{8} - 2u^{6} - 2u^{4} - 2u^{3} + u^{2} - u \end{pmatrix} \end{aligned}$$

(ii) Obstruction class = 1

(iii) Cusp Shapes = $-11u^8 - 6u^7 + 11u^6 + 15u^5 + 36u^4 + 40u^3 + 29u^2 + 19u + 4$

Crossings	u-Polynomials at each crossing
c_1	$u^9 + u^8 - 3u^7 - 5u^6 + 2u^5 + 8u^4 + u^3 - 4u^2 - u + 1$
<i>c</i> ₂	$u^{9} + 7u^{8} + 23u^{7} + 51u^{6} + 84u^{5} + 96u^{4} + 71u^{3} + 34u^{2} + 9u + 1$
c_3, c_8	$u^9 - u^7 - 3u^5 + 3u^4 - 2u^3 + 3u^2 - u + 1$
C4	$u^9 + 2u^8 + 3u^7 + 3u^6 + u^5 + u^4 + u^3 - 2u^2 + 1$
<i>C</i> ₅	$u^9 + u^8 + 2u^5 + 5u^4 + 4u^3 + 3u^2 + 2u + 1$
<i>c</i> ₆	$u^9 - u^8 - 3u^7 + 5u^6 + 2u^5 - 8u^4 + u^3 + 4u^2 - u - 1$
C7	$u^9 - 4u^8 + 8u^7 - 8u^6 + 4u^5 + u^4 - 3u^3 + 4u^2 - 3u + 1$
<i>C</i> 9	$u^9 - u^7 - 3u^5 - 3u^4 - 2u^3 - 3u^2 - u - 1$
c_{10}	$u^9 + 4u^8 + 8u^7 + 8u^6 + 4u^5 - u^4 - 3u^3 - 4u^2 - 3u - 1$
c ₁₁	$u^9 - 2u^8 + 3u^7 - 3u^6 + u^5 - u^4 + u^3 + 2u^2 - 1$

(iv) u-Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_{1}, c_{6}	$y^9 - 7y^8 + 23y^7 - 51y^6 + 84y^5 - 96y^4 + 71y^3 - 34y^2 + 9y - 1$
c_2	$y^9 - 3y^8 - 17y^7 + 61y^6 + 72y^5 - 356y^4 - 77y^3 - 70y^2 + 13y - 1$
c_3, c_8, c_9	$y^9 - 2y^8 - 5y^7 + 2y^6 + 11y^5 + 5y^4 - 8y^3 - 11y^2 - 5y - 1$
c_4, c_{11}	$y^9 + 2y^8 - y^7 - 5y^6 + 9y^5 + 9y^4 - y^3 - 6y^2 + 4y - 1$
C5	$y^9 - y^8 + 4y^7 - 2y^6 + 2y^5 - 11y^4 - 6y^3 - 3y^2 - 2y - 1$
c_7, c_{10}	$y^9 + 8y^7 + 2y^6 + 10y^5 - y^4 - 7y^3 + y - 1$

(\mathbf{v}) Riley Polynomials at the component

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\operatorname{vol}+\sqrt{-1}CS)$	Cusp shape
u = 0.187026 + 0.975482I		
a = 1.49016 - 0.14200I	2.30462 - 3.49273I	-2.36810 + 1.84153I
b = -1.04647 + 1.04626I		
u = 0.187026 - 0.975482I		
a = 1.49016 + 0.14200I	2.30462 + 3.49273I	-2.36810 - 1.84153I
b = -1.04647 - 1.04626I		
u = 0.371524 + 0.883251I		
a = 0.023313 + 0.680902I	-5.46047 + 4.24647I	-14.3219 - 11.0959I
b = -0.23136 - 2.96704I		
u = 0.371524 - 0.883251I		
a = 0.023313 - 0.680902I	-5.46047 - 4.24647I	-14.3219 + 11.0959I
b = -0.23136 + 2.96704I		
u = -1.182340 + 0.166435I		
a = 0.381598 - 0.765916I	4.76964 - 2.24591I	6.27523 + 4.01918I
b = -0.406219 - 0.959782I		
u = -1.182340 - 0.166435I		
a = 0.381598 + 0.765916I	4.76964 + 2.24591I	6.27523 - 4.01918I
b = -0.406219 + 0.959782I		
u = -0.245900 + 0.620274I		
a = -0.08889 - 1.83830I	-2.24646 - 2.97681I	0.11269 + 3.28969I
b = -0.76587 + 2.09421I		
u = -0.245900 - 0.620274I		
a = -0.08889 + 1.83830I	-2.24646 + 2.97681I	0.11269 - 3.28969I
b = -0.76587 - 2.09421I		
u = 1.73938		
a = 0.387642	1.26533	-2.39580
b = 1.89983		

Crossings	u-Polynomials at each crossing
<i>c</i> ₁	$(u^9 + u^8 - 3u^7 - 5u^6 + 2u^5 + 8u^4 + u^3 - 4u^2 - u + 1)$ $\cdot (u^{13} - 11u^{12} + \dots - 48u + 16)$
<i>c</i> ₂	$(u^9 + 7u^8 + 23u^7 + 51u^6 + 84u^5 + 96u^4 + 71u^3 + 34u^2 + 9u + 1)$ $\cdot (u^{13} + 7u^{12} + \dots - 640u + 256)$
c_3, c_8	$(u^9 - u^7 + \dots - u + 1)(u^{13} + u^{12} + \dots + u + 1)$
c_4	$(u^9 + 2u^8 + \dots - 2u^2 + 1)(u^{13} - 3u^{12} + \dots - 2u + 1)$
C5	$(u^9 + u^8 + \dots + 2u + 1)(u^{13} - 14u^{11} + \dots + 13u + 6)$
<i>c</i> ₆	$(u^9 - u^8 - 3u^7 + 5u^6 + 2u^5 - 8u^4 + u^3 + 4u^2 - u - 1)$ $\cdot (u^{13} - 11u^{12} + \dots - 48u + 16)$
<i>C</i> ₇	$(u^9 - 4u^8 + 8u^7 - 8u^6 + 4u^5 + u^4 - 3u^3 + 4u^2 - 3u + 1)$ $\cdot (u^{13} - 3u^{12} + \dots + 3u - 1)$
<i>C</i> 9	$(u^9 - u^7 + \dots - u - 1)(u^{13} + u^{12} + \dots + u + 1)$
c_{10}	$(u^9 + 4u^8 + 8u^7 + 8u^6 + 4u^5 - u^4 - 3u^3 - 4u^2 - 3u - 1)$ $\cdot (u^{13} - 3u^{12} + \dots + 3u - 1)$
c_{11}	$(u^9 - 2u^8 + \dots + 2u^2 - 1)(u^{13} - 3u^{12} + \dots - 2u + 1)$

III.	u-Polynomials
------	---------------

Crossings	Riley Polynomials at each crossing
c_{1}, c_{6}	$(y^9 - 7y^8 + 23y^7 - 51y^6 + 84y^5 - 96y^4 + 71y^3 - 34y^2 + 9y - 1)$ $\cdot (y^{13} - 7y^{12} + \dots - 640y - 256)$
<i>c</i> ₂	$(y^9 - 3y^8 - 17y^7 + 61y^6 + 72y^5 - 356y^4 - 77y^3 - 70y^2 + 13y - 1)$ $\cdot (y^{13} + 69y^{12} + \dots - 106496y - 65536)$
c_3, c_8, c_9	$(y^9 - 2y^8 - 5y^7 + 2y^6 + 11y^5 + 5y^4 - 8y^3 - 11y^2 - 5y - 1)$ $\cdot (y^{13} - 33y^{12} + \dots + 5y - 1)$
c_4, c_{11}	$(y^9 + 2y^8 - y^7 - 5y^6 + 9y^5 + 9y^4 - y^3 - 6y^2 + 4y - 1)$ $\cdot (y^{13} + 27y^{12} + \dots - 34y - 1)$
C5	$(y^9 - y^8 + 4y^7 - 2y^6 + 2y^5 - 11y^4 - 6y^3 - 3y^2 - 2y - 1)$ $\cdot (y^{13} - 28y^{12} + \dots - 83y - 36)$
c_7, c_{10}	$(y^9 + 8y^7 + \dots + y - 1)(y^{13} + y^{12} + \dots - y - 1)$

IV. Riley Polynomials