

Ideals for irreducible components s^{2} of $X_{\text {par }}$

$$
I_{1}^{u}=\left\langle u^{3}-u^{2}-2 u+1\right\rangle
$$

* 1 irreducible components of $\operatorname{dim}_{\mathbb{C}}=0$, with total 3 representations.

[^0]
I. $I_{1}^{u}=\left\langle u^{3}-u^{2}-2 u+1\right\rangle$

(i) Arc colorings

$$
\begin{aligned}
& a_{1}=\binom{1}{0} \\
& a_{5}=\binom{0}{u} \\
& a_{2}=\binom{1}{u^{2}} \\
& a_{6}=\binom{-u}{-u^{2}-u+1} \\
& a_{4}=\binom{u}{u} \\
& a_{7}=\binom{-u^{2}+1}{-u^{2}} \\
& a_{3}=\binom{-u^{2}+1}{-u^{2}-u+1} \\
& a_{3}=\binom{-u^{2}+1}{-u^{2}-u+1}
\end{aligned}
$$

(ii) Obstruction class $=-1$
(iii) Cusp Shapes $=-14$
(iv) u-Polynomials at the component

Crossings	u -Polynomials at each crossing
c_{1}, c_{2}, c_{3}	
c_{4}, c_{5}, c_{6}	$u^{3}+u^{2}-2 u-1$
c_{7}	

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_{1}, c_{2}, c_{3}	
c_{4}, c_{5}, c_{6}	$y^{3}-5 y^{2}+6 y-1$
c_{7}	

(vi) Complex Volumes and Cusp Shapes

Solutions to I_{1}^{u}	$\sqrt{-1}(\mathrm{vol}+\sqrt{-1} C S)$	Cusp shape
$u=-1.24698$	-6.34475	-14.0000
$u=0.445042$	-0.704972	-14.0000
$u=1.80194$	-17.6243	-14.0000

II. u-Polynomials

Crossings	u -Polynomials at each crossing
c_{1}, c_{2}, c_{3}	
c_{4}, c_{5}, c_{6}	$u^{3}+u^{2}-2 u-1$
c_{7}	

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_{1}, c_{2}, c_{3}	
c_{4}, c_{5}, c_{6}	$y^{3}-5 y^{2}+6 y-1$
c_{7}	

[^0]: ${ }^{1}$ The image of knot diagram is generated by the software "Draw programme" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm\#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
 ${ }^{2}$ All coefficients of polynomials are rational numbers. But the coetficients are sometimes approximated in decimal forms when there is not enough margin.

