12a
0202
(K12a
0202
)
A knot diagram
1
Linearized knot diagam
3 6 7 8 9 2 12 11 1 5 4 10
Solving Sequence
8,11 5,9
6 4 12 7 3 2 10 1
c
8
c
5
c
4
c
11
c
7
c
3
c
2
c
10
c
12
c
1
, c
6
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h−5.85376 × 10
42
u
30
4.11584 × 10
43
u
29
+ ··· + 6.43717 × 10
43
b 1.52717 × 10
45
,
1.65310 × 10
43
u
30
4.70509 × 10
44
u
29
+ ··· + 4.05542 × 10
45
a 7.34210 × 10
46
,
u
31
+ 7u
30
+ ··· + 1062u + 189i
I
v
1
= ha, b + 1, v
2
+ v + 1i
I
v
2
= ha, b
2
b + 1, v 1i
I
v
3
= ha, 4v
3
v
2
+ 5b + 22v 2, v
4
v
3
+ 6v
2
4v + 1i
* 4 irreducible components of dim
C
= 0, with total 39 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−5.85 × 10
42
u
30
4.12 × 10
43
u
29
+ · · · + 6.44 × 10
43
b 1.53 ×
10
45
, 1.65 × 10
43
u
30
4.71 × 10
44
u
29
+ · · · + 4.06 × 10
45
a 7.34 ×
10
46
, u
31
+ 7u
30
+ · · · + 1062u + 189i
(i) Arc colorings
a
8
=
1
0
a
11
=
0
u
a
5
=
0.00407627u
30
+ 0.116020u
29
+ ··· + 71.4362u + 18.1044
0.0909369u
30
+ 0.639387u
29
+ ··· + 117.933u + 23.7242
a
9
=
1
u
2
a
6
=
0.0650669u
30
+ 0.372522u
29
+ ··· + 47.1836u + 10.9151
0.150639u
30
0.814503u
29
+ ··· 51.5391u 8.48759
a
4
=
0.0868606u
30
0.523367u
29
+ ··· 46.4970u 5.61977
0.0909369u
30
+ 0.639387u
29
+ ··· + 117.933u + 23.7242
a
12
=
0.141645u
30
0.885725u
29
+ ··· 143.560u 32.5033
0.136354u
30
+ 0.848688u
29
+ ··· + 128.206u + 26.8843
a
7
=
0.159417u
30
+ 1.05337u
29
+ ··· + 203.681u + 47.2113
0.0886170u
30
+ 0.486093u
29
+ ··· + 27.1810u + 2.41793
a
3
=
0.134901u
30
0.754733u
29
+ ··· 92.6270u 19.9654
0.0991047u
30
0.789918u
29
+ ··· 201.805u 46.7404
a
2
=
0.0568952u
30
+ 0.361874u
29
+ ··· + 34.6334u + 5.22896
0.426439u
30
2.74939u
29
+ ··· 446.153u 94.9907
a
10
=
0.000387022u
30
0.0156505u
29
+ ··· 26.4970u 7.97560
0.00567803u
30
+ 0.0213866u
29
+ ··· 9.14249u 2.35655
a
1
=
0.123885u
30
0.755730u
29
+ ··· 104.552u 23.7852
0.109341u
30
+ 0.684999u
29
+ ··· + 104.246u + 21.1806
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.415132u
30
+ 2.95762u
29
+ ··· + 715.270u + 178.126
2
(iv) u-Polynomials at the component
3
Crossings u-Polynomials at each crossing
c
1
u
31
18u
30
+ ··· 10u + 1
c
2
u
31
2u
30
+ ··· + 4u 1
c
3
u
31
+ 2u
30
+ ··· 14u
2
1
c
4
u
31
3u
30
+ ··· 3u + 1
c
5
u
31
+ 2u
30
+ ··· + 5u 1
c
6
u
31
+ 2u
30
+ ··· + 4u + 1
c
7
u
31
+ 4u
30
+ ··· + 3u + 1
c
8
u
31
+ 7u
30
+ ··· + 1062u + 189
c
9
u
31
+ 10u
30
+ ··· + 3u + 1
c
10
u
31
3u
29
+ ··· u + 1
c
11
u
31
u
30
+ ··· 3u
2
+ 1
c
12
u
31
10u
30
+ ··· + 3u 1
4
5
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
31
2y
30
+ ··· + 10y 1
c
2
, c
6
y
31
+ 18y
30
+ ··· 10y 1
c
3
y
31
10y
30
+ ··· 28y 1
c
4
y
31
+ 3y
30
+ ··· + 11y 1
c
5
y
31
+ 10y
30
+ ··· 23y 1
c
7
y
31
26y
30
+ ··· 7y 1
c
8
y
31
17y
30
+ ··· 40554y 35721
c
9
, c
12
y
31
+ 14y
30
+ ··· 27y 1
c
10
y
31
6y
30
+ ··· + 13y 1
c
11
y
31
13y
30
+ ··· + 6y 1
6
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.787754 + 0.671220I
a = 0.071441 0.869841I
b = 1.11016 1.12553I
0.66300 4.58967I 3.64967 + 6.32585I
u = 0.787754 0.671220I
a = 0.071441 + 0.869841I
b = 1.11016 + 1.12553I
0.66300 + 4.58967I 3.64967 6.32585I
u = 0.919933 + 0.149004I
a = 0.754923 + 0.119454I
b = 0.731306 0.126839I
0.96861 3.12100I 7.33060 + 2.35538I
u = 0.919933 0.149004I
a = 0.754923 0.119454I
b = 0.731306 + 0.126839I
0.96861 + 3.12100I 7.33060 2.35538I
u = 0.882506 + 0.604366I
a = 0.000444 + 0.754013I
b = 1.08064 + 1.17241I
1.31127 9.18738I 2.03905 + 12.84834I
u = 0.882506 0.604366I
a = 0.000444 0.754013I
b = 1.08064 1.17241I
1.31127 + 9.18738I 2.03905 12.84834I
u = 1.085000 + 0.299590I
a = 0.718094 + 0.604115I
b = 0.112159 + 0.738606I
3.66102 + 5.86923I 0.31180 5.53881I
u = 1.085000 0.299590I
a = 0.718094 0.604115I
b = 0.112159 0.738606I
3.66102 5.86923I 0.31180 + 5.53881I
u = 0.289850 + 0.728639I
a = 0.48734 1.87783I
b = 1.19769 1.43281I
0.27311 2.22846I 7.52450 + 10.82880I
u = 0.289850 0.728639I
a = 0.48734 + 1.87783I
b = 1.19769 + 1.43281I
0.27311 + 2.22846I 7.52450 10.82880I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.208330 + 0.213280I
a = 0.563685 0.106371I
b = 0.578875 + 0.081419I
2.49777 + 0.42674I 3.8814 13.6068I
u = 1.208330 0.213280I
a = 0.563685 + 0.106371I
b = 0.578875 0.081419I
2.49777 0.42674I 3.8814 + 13.6068I
u = 1.004870 + 0.756525I
a = 0.138979 + 0.649444I
b = 0.97827 + 1.09815I
2.54917 2.29555I 2.17391 + 2.92369I
u = 1.004870 0.756525I
a = 0.138979 0.649444I
b = 0.97827 1.09815I
2.54917 + 2.29555I 2.17391 2.92369I
u = 1.261950 + 0.109878I
a = 0.676138 0.385755I
b = 0.077347 0.656336I
6.52646 + 10.71380I 3.90729 8.40713I
u = 1.261950 0.109878I
a = 0.676138 + 0.385755I
b = 0.077347 + 0.656336I
6.52646 10.71380I 3.90729 + 8.40713I
u = 0.425245 + 1.202740I
a = 0.989675 + 0.636178I
b = 1.50889 + 0.69268I
5.08590 6.12096I 10.22352 + 5.74476I
u = 0.425245 1.202740I
a = 0.989675 0.636178I
b = 1.50889 0.69268I
5.08590 + 6.12096I 10.22352 5.74476I
u = 0.941908 + 0.964204I
a = 0.302323 0.638136I
b = 1.014340 0.955285I
0.97627 4.81638I 1.86561 + 11.56814I
u = 0.941908 0.964204I
a = 0.302323 + 0.638136I
b = 1.014340 + 0.955285I
0.97627 + 4.81638I 1.86561 11.56814I
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.103232 + 0.545002I
a = 0.56419 + 2.65696I
b = 0.36747 + 1.47669I
0.74907 + 3.79069I 6.38246 10.09885I
u = 0.103232 0.545002I
a = 0.56419 2.65696I
b = 0.36747 1.47669I
0.74907 3.79069I 6.38246 + 10.09885I
u = 0.60387 + 1.31633I
a = 0.369398 0.916044I
b = 0.826490 0.760871I
6.87994 + 5.02111I 5.16614 5.44554I
u = 0.60387 1.31633I
a = 0.369398 + 0.916044I
b = 0.826490 + 0.760871I
6.87994 5.02111I 5.16614 + 5.44554I
u = 1.38864 + 0.56571I
a = 0.414352 0.550377I
b = 0.223840 0.647984I
7.66190 + 2.29159I 5.67077 3.09442I
u = 1.38864 0.56571I
a = 0.414352 + 0.550377I
b = 0.223840 + 0.647984I
7.66190 2.29159I 5.67077 + 3.09442I
u = 1.60304
a = 0.427829
b = 0.481754
1.81126 9.27850
u = 1.12150 + 1.17887I
a = 0.044962 + 0.711521I
b = 0.481462 + 0.651796I
4.85303 + 3.78421I 1.98912 7.10308I
u = 1.12150 1.17887I
a = 0.044962 0.711521I
b = 0.481462 0.651796I
4.85303 3.78421I 1.98912 + 7.10308I
u = 1.80227 + 0.16548I
a = 0.372128 + 0.038139I
b = 0.441313 0.027890I
1.24263 + 4.03762I 10.43934 + 0.I
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.80227 0.16548I
a = 0.372128 0.038139I
b = 0.441313 + 0.027890I
1.24263 4.03762I 10.43934 + 0.I
10
II. I
v
1
= ha, b + 1, v
2
+ v + 1i
(i) Arc colorings
a
8
=
1
0
a
11
=
v
0
a
5
=
0
1
a
9
=
1
0
a
6
=
1
1
a
4
=
1
1
a
12
=
2v
v
a
7
=
2v 1
v + 1
a
3
=
v + 3
2
a
2
=
2
v 1
a
10
=
v
v
a
1
=
2v + 1
v 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8v 1
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
6
c
7
, c
10
, c
11
c
12
u
2
u + 1
c
2
, c
9
u
2
+ u + 1
c
4
, c
5
(u 1)
2
c
8
u
2
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
6
, c
7
, c
9
c
10
, c
11
, c
12
y
2
+ y + 1
c
4
, c
5
(y 1)
2
c
8
y
2
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 0.500000 + 0.866025I
a = 0
b = 1.00000
4.05977I 3.00000 6.92820I
v = 0.500000 0.866025I
a = 0
b = 1.00000
4.05977I 3.00000 + 6.92820I
14
III. I
v
2
= ha, b
2
b + 1, v 1i
(i) Arc colorings
a
8
=
1
0
a
11
=
1
0
a
5
=
0
b
a
9
=
1
0
a
6
=
b
b
a
4
=
b
b
a
12
=
b
b + 1
a
7
=
0
b
a
3
=
b
b 1
a
2
=
1
0
a
10
=
1
b + 1
a
1
=
0
b
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8b + 4
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
6
c
7
, c
10
, c
11
c
12
u
2
u + 1
c
2
, c
4
, c
5
c
9
u
2
+ u + 1
c
8
u
2
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
6
c
7
, c
9
, c
10
c
11
, c
12
y
2
+ y + 1
c
8
y
2
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
2
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 0.500000 + 0.866025I
4.05977I 0. 6.92820I
v = 1.00000
a = 0
b = 0.500000 0.866025I
4.05977I 0. + 6.92820I
18
IV. I
v
3
= ha, 4v
3
v
2
+ 5b + 22v 2, v
4
v
3
+ 6v
2
4v + 1i
(i) Arc colorings
a
8
=
1
0
a
11
=
v
0
a
5
=
0
4
5
v
3
+
1
5
v
2
22
5
v +
2
5
a
9
=
1
0
a
6
=
4
5
v
3
1
5
v
2
+
22
5
v
2
5
4
5
v
3
+
1
5
v
2
22
5
v +
2
5
a
4
=
4
5
v
3
1
5
v
2
+
22
5
v
2
5
4
5
v
3
+
1
5
v
2
22
5
v +
2
5
a
12
=
3
5
v
3
2
5
v
2
+
24
5
v
9
5
3
5
v
3
+
2
5
v
2
19
5
v +
9
5
a
7
=
2
5
v
3
+
3
5
v
2
16
5
v +
6
5
3
5
v
3
2
5
v
2
+
19
5
v
4
5
a
3
=
4
5
v
3
1
5
v
2
+
27
5
v
7
5
7
5
v
3
+
3
5
v
2
41
5
v +
11
5
a
2
=
6
5
v
3
4
5
v
2
+
38
5
v
18
5
9
5
v
3
+
6
5
v
2
52
5
v +
22
5
a
10
=
v
3
5
v
3
+
2
5
v
2
19
5
v +
9
5
a
1
=
2
5
v
3
3
5
v
2
+
16
5
v
6
5
3
5
v
3
+
2
5
v
2
19
5
v +
4
5
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4v
3
4v
2
+ 23v 8
19
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
6
c
7
, c
12
(u
2
u + 1)
2
c
2
, c
9
(u
2
+ u + 1)
2
c
4
, c
5
u
4
u
3
+ 2u + 1
c
8
u
4
c
10
, c
11
u
4
+ u
3
+ 3u
2
+ u + 1
20
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
6
, c
7
, c
9
c
12
(y
2
+ y + 1)
2
c
4
, c
5
y
4
y
3
+ 6y
2
4y + 1
c
8
y
4
c
10
, c
11
y
4
+ 5y
3
+ 9y
2
+ 5y + 1
21
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
3
1(vol +
1CS) Cusp shape
v = 0.351597 + 0.233523I
a = 0
b = 1.12196 1.05376I
0 0.24584 + 5.00967I
v = 0.351597 0.233523I
a = 0
b = 1.12196 + 1.05376I
0 0.24584 5.00967I
v = 0.14840 + 2.36455I
a = 0
b = 0.621964 + 0.187730I
0 7.74584 0.67954I
v = 0.14840 2.36455I
a = 0
b = 0.621964 0.187730I
0 7.74584 + 0.67954I
22
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
2
u + 1)
4
)(u
31
18u
30
+ ··· 10u + 1)
c
2
((u
2
+ u + 1)
4
)(u
31
2u
30
+ ··· + 4u 1)
c
3
((u
2
u + 1)
4
)(u
31
+ 2u
30
+ ··· 14u
2
1)
c
4
((u 1)
2
)(u
2
+ u + 1)(u
4
u
3
+ 2u + 1)(u
31
3u
30
+ ··· 3u + 1)
c
5
((u 1)
2
)(u
2
+ u + 1)(u
4
u
3
+ 2u + 1)(u
31
+ 2u
30
+ ··· + 5u 1)
c
6
((u
2
u + 1)
4
)(u
31
+ 2u
30
+ ··· + 4u + 1)
c
7
((u
2
u + 1)
4
)(u
31
+ 4u
30
+ ··· + 3u + 1)
c
8
u
8
(u
31
+ 7u
30
+ ··· + 1062u + 189)
c
9
((u
2
+ u + 1)
4
)(u
31
+ 10u
30
+ ··· + 3u + 1)
c
10
((u
2
u + 1)
2
)(u
4
+ u
3
+ 3u
2
+ u + 1)(u
31
3u
29
+ ··· u + 1)
c
11
((u
2
u + 1)
2
)(u
4
+ u
3
+ 3u
2
+ u + 1)(u
31
u
30
+ ··· 3u
2
+ 1)
c
12
((u
2
u + 1)
4
)(u
31
10u
30
+ ··· + 3u 1)
23
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y
2
+ y + 1)
4
)(y
31
2y
30
+ ··· + 10y 1)
c
2
, c
6
((y
2
+ y + 1)
4
)(y
31
+ 18y
30
+ ··· 10y 1)
c
3
((y
2
+ y + 1)
4
)(y
31
10y
30
+ ··· 28y 1)
c
4
((y 1)
2
)(y
2
+ y + 1)(y
4
y
3
+ ··· 4y + 1)(y
31
+ 3y
30
+ ··· + 11y 1)
c
5
((y 1)
2
)(y
2
+ y + 1)(y
4
y
3
+ ··· 4y + 1)(y
31
+ 10y
30
+ ··· 23y 1)
c
7
((y
2
+ y + 1)
4
)(y
31
26y
30
+ ··· 7y 1)
c
8
y
8
(y
31
17y
30
+ ··· 40554y 35721)
c
9
, c
12
((y
2
+ y + 1)
4
)(y
31
+ 14y
30
+ ··· 27y 1)
c
10
((y
2
+ y + 1)
2
)(y
4
+ 5y
3
+ ··· + 5y + 1)(y
31
6y
30
+ ··· + 13y 1)
c
11
((y
2
+ y + 1)
2
)(y
4
+ 5y
3
+ ··· + 5y + 1)(y
31
13y
30
+ ··· + 6y 1)
24