12a
0204
(K12a
0204
)
A knot diagram
1
Linearized knot diagam
3 6 7 8 10 2 1 12 11 5 9 4
Solving Sequence
2,7
6 3 4 1 8 5 12 9 11 10
c
6
c
2
c
3
c
1
c
7
c
4
c
12
c
8
c
11
c
10
c
5
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= hu
86
+ u
85
+ ··· + 3u + 1i
* 1 irreducible components of dim
C
= 0, with total 86 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
86
+ u
85
+ · · · + 3u + 1i
(i) Arc colorings
a
2
=
0
u
a
7
=
1
0
a
6
=
1
u
2
a
3
=
u
u
3
+ u
a
4
=
u
3
u
3
+ u
a
1
=
u
3
u
5
+ u
3
+ u
a
8
=
u
8
+ u
6
+ u
4
+ 1
u
10
+ 2u
8
+ 3u
6
+ 2u
4
+ u
2
a
5
=
u
21
+ 4u
19
+ 9u
17
+ 12u
15
+ 12u
13
+ 10u
11
+ 9u
9
+ 6u
7
+ 3u
5
+ u
u
23
+ 5u
21
+ ··· + 2u
3
+ u
a
12
=
u
11
2u
9
2u
7
+ u
3
u
11
+ 3u
9
+ 4u
7
+ 3u
5
+ u
3
+ u
a
9
=
u
32
+ 7u
30
+ ··· + 2u
12
+ 1
u
32
8u
30
+ ··· 12u
8
4u
6
a
11
=
u
53
12u
51
+ ··· 3u
5
u
u
53
+ 13u
51
+ ··· + u
3
+ u
a
10
=
u
74
+ 17u
72
+ ··· + u
2
+ 1
u
74
18u
72
+ ··· 2u
4
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
85
+ 4u
84
+ ··· + 24u + 10
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
86
+ 41u
85
+ ··· + 3u + 1
c
2
, c
6
u
86
u
85
+ ··· 3u + 1
c
3
u
86
+ u
85
+ ··· + 471u + 65
c
4
u
86
u
85
+ ··· 149u + 137
c
5
, c
10
u
86
u
85
+ ··· + u + 1
c
7
u
86
5u
85
+ ··· 623u + 111
c
8
, c
9
, c
11
u
86
21u
85
+ ··· 3u + 1
c
12
u
86
+ 9u
85
+ ··· + 6433u + 797
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
86
+ 9y
85
+ ··· + 19y + 1
c
2
, c
6
y
86
+ 41y
85
+ ··· + 3y + 1
c
3
y
86
23y
85
+ ··· + 399819y + 4225
c
4
y
86
+ 9y
85
+ ··· + 312079y + 18769
c
5
, c
10
y
86
+ 21y
85
+ ··· + 3y + 1
c
7
y
86
+ 13y
85
+ ··· + 865727y + 12321
c
8
, c
9
, c
11
y
86
+ 89y
85
+ ··· + 11y + 1
c
12
y
86
+ 29y
85
+ ··· + 40057159y + 635209
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.552073 + 0.903867I
4.89234 1.96034I 0
u = 0.552073 0.903867I
4.89234 + 1.96034I 0
u = 0.022062 + 0.940386I
5.66854 3.02612I 3.62148 + 2.70851I
u = 0.022062 0.940386I
5.66854 + 3.02612I 3.62148 2.70851I
u = 0.561963 + 0.912758I
4.52045 4.21833I 0
u = 0.561963 0.912758I
4.52045 + 4.21833I 0
u = 0.642242 + 0.650491I
3.74752 + 8.94433I 2.00000 7.87615I
u = 0.642242 0.650491I
3.74752 8.94433I 2.00000 + 7.87615I
u = 0.257669 + 1.056490I
0.670480 0.639201I 0
u = 0.257669 1.056490I
0.670480 + 0.639201I 0
u = 0.633408 + 0.654906I
4.15827 2.71284I 1.31273 + 3.00115I
u = 0.633408 0.654906I
4.15827 + 2.71284I 1.31273 3.00115I
u = 0.550086 + 0.961327I
2.46470 0.37994I 0
u = 0.550086 0.961327I
2.46470 + 0.37994I 0
u = 0.517375 + 0.987111I
0.07166 2.62578I 0
u = 0.517375 0.987111I
0.07166 + 2.62578I 0
u = 0.633756 + 0.606008I
3.50780 + 5.03732I 7.81344 8.08967I
u = 0.633756 0.606008I
3.50780 5.03732I 7.81344 + 8.08967I
u = 0.238562 + 1.113670I
2.23970 + 4.39842I 0
u = 0.238562 1.113670I
2.23970 4.39842I 0
u = 0.264448 + 1.111100I
4.27295 0.76354I 0
u = 0.264448 1.111100I
4.27295 + 0.76354I 0
u = 0.554348 + 1.004930I
3.01740 + 4.89814I 0
u = 0.554348 1.004930I
3.01740 4.89814I 0
u = 0.311549 + 1.107070I
4.74848 + 0.89916I 0
u = 0.311549 1.107070I
4.74848 0.89916I 0
u = 0.347956 + 1.100820I
3.34095 4.64653I 0
u = 0.347956 1.100820I
3.34095 + 4.64653I 0
u = 0.635644 + 0.546117I
4.36758 0.22453I 10.66536 + 0.55787I
u = 0.635644 0.546117I
4.36758 + 0.22453I 10.66536 0.55787I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.770174 + 0.323215I
5.37084 + 11.03650I 0.76608 7.01041I
u = 0.770174 0.323215I
5.37084 11.03650I 0.76608 + 7.01041I
u = 0.588398 + 0.591566I
1.23725 1.78468I 1.82852 + 3.46758I
u = 0.588398 0.591566I
1.23725 + 1.78468I 1.82852 3.46758I
u = 0.239868 + 1.142870I
9.93808 + 8.18745I 0
u = 0.239868 1.142870I
9.93808 8.18745I 0
u = 0.245139 + 1.142850I
10.34130 1.86383I 0
u = 0.245139 1.142850I
10.34130 + 1.86383I 0
u = 0.767277 + 0.318425I
5.80930 4.73542I 0.13133 + 2.18376I
u = 0.767277 0.318425I
5.80930 + 4.73542I 0.13133 2.18376I
u = 0.676444 + 0.477199I
1.06723 3.95000I 4.49030 + 3.18305I
u = 0.676444 0.477199I
1.06723 + 3.95000I 4.49030 3.18305I
u = 0.748230 + 0.339955I
2.22223 + 7.05409I 5.75869 7.62186I
u = 0.748230 0.339955I
2.22223 7.05409I 5.75869 + 7.62186I
u = 0.680511 + 0.452157I
1.17586 1.85794I 4.15708 + 2.29378I
u = 0.680511 0.452157I
1.17586 + 1.85794I 4.15708 2.29378I
u = 0.567898 + 1.043900I
2.72701 + 8.77066I 0
u = 0.567898 1.043900I
2.72701 8.77066I 0
u = 0.339044 + 1.142000I
11.40330 + 1.33625I 0
u = 0.339044 1.142000I
11.40330 1.33625I 0
u = 0.344970 + 1.141800I
11.12770 7.68084I 0
u = 0.344970 1.141800I
11.12770 + 7.68084I 0
u = 0.562524 + 1.055970I
2.94385 2.95008I 0
u = 0.562524 1.055970I
2.94385 + 2.95008I 0
u = 0.713316 + 0.364912I
3.53763 + 1.70720I 9.34373 0.47522I
u = 0.713316 0.364912I
3.53763 1.70720I 9.34373 + 0.47522I
u = 0.727927 + 0.324780I
0.00076 3.48701I 0.10685 + 2.81460I
u = 0.727927 0.324780I
0.00076 + 3.48701I 0.10685 2.81460I
u = 0.509299 + 1.093680I
2.26558 2.69665I 0
u = 0.509299 1.093680I
2.26558 + 2.69665I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.532946 + 1.112480I
3.24505 + 6.62506I 0
u = 0.532946 1.112480I
3.24505 6.62506I 0
u = 0.560287 + 1.103940I
1.37872 6.58460I 0
u = 0.560287 1.103940I
1.37872 + 6.58460I 0
u = 0.504237 + 1.132970I
10.05170 0.22011I 0
u = 0.504237 1.132970I
10.05170 + 0.22011I 0
u = 0.509014 + 1.133500I
10.25420 + 6.56885I 0
u = 0.509014 1.133500I
10.25420 6.56885I 0
u = 0.556014 + 1.119300I
2.31255 + 8.37360I 0
u = 0.556014 1.119300I
2.31255 8.37360I 0
u = 0.565704 + 1.120250I
0.06439 12.03000I 0
u = 0.565704 1.120250I
0.06439 + 12.03000I 0
u = 0.565065 + 1.132160I
8.19937 + 9.74957I 0
u = 0.565065 1.132160I
8.19937 9.74957I 0
u = 0.567396 + 1.131720I
7.7482 16.0682I 0
u = 0.567396 1.131720I
7.7482 + 16.0682I 0
u = 0.665867 + 0.284233I
0.89403 1.98382I 1.24074 + 3.64496I
u = 0.665867 0.284233I
0.89403 + 1.98382I 1.24074 3.64496I
u = 0.696778 + 0.188590I
7.58004 2.02263I 2.18699 + 2.22834I
u = 0.696778 0.188590I
7.58004 + 2.02263I 2.18699 2.22834I
u = 0.692184 + 0.175922I
7.35283 4.28364I 1.74327 + 2.87228I
u = 0.692184 0.175922I
7.35283 + 4.28364I 1.74327 2.87228I
u = 0.325865 + 0.553283I
0.082965 1.264650I 0.85289 + 5.85230I
u = 0.325865 0.553283I
0.082965 + 1.264650I 0.85289 5.85230I
u = 0.561379 + 0.192622I
0.06888 1.56934I 2.04853 + 4.27715I
u = 0.561379 0.192622I
0.06888 + 1.56934I 2.04853 4.27715I
7
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
u
86
+ 41u
85
+ ··· + 3u + 1
c
2
, c
6
u
86
u
85
+ ··· 3u + 1
c
3
u
86
+ u
85
+ ··· + 471u + 65
c
4
u
86
u
85
+ ··· 149u + 137
c
5
, c
10
u
86
u
85
+ ··· + u + 1
c
7
u
86
5u
85
+ ··· 623u + 111
c
8
, c
9
, c
11
u
86
21u
85
+ ··· 3u + 1
c
12
u
86
+ 9u
85
+ ··· + 6433u + 797
8
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
y
86
+ 9y
85
+ ··· + 19y + 1
c
2
, c
6
y
86
+ 41y
85
+ ··· + 3y + 1
c
3
y
86
23y
85
+ ··· + 399819y + 4225
c
4
y
86
+ 9y
85
+ ··· + 312079y + 18769
c
5
, c
10
y
86
+ 21y
85
+ ··· + 3y + 1
c
7
y
86
+ 13y
85
+ ··· + 865727y + 12321
c
8
, c
9
, c
11
y
86
+ 89y
85
+ ··· + 11y + 1
c
12
y
86
+ 29y
85
+ ··· + 40057159y + 635209
9