12a
0208
(K12a
0208
)
A knot diagram
1
Linearized knot diagam
3 6 7 8 11 2 9 4 1 12 5 10
Solving Sequence
1,9 4,10
8 5 7 3 2 6 12 11
c
9
c
8
c
4
c
7
c
3
c
1
c
6
c
12
c
10
c
2
, c
5
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h−73876195581u
31
+ 635182095531u
30
+ ··· + 1260543449654b 1153435624046,
324186211813u
31
+ 2767349300228u
30
+ ··· + 2521086899308a + 292251319739,
u
32
8u
31
+ ··· 3u + 4i
I
u
2
= h−46u
26
a + 785u
26
+ ··· + 710a 2547, 2u
26
a 2u
26
+ ··· 7a + 10, u
27
7u
26
+ ··· 2u + 1i
I
u
3
= hb u + 1, a 1, u
2
u + 1i
I
u
4
= hb
2
+ 1, u
2
+ a u + 2, u
3
u
2
+ 2u 1i
* 4 irreducible components of dim
C
= 0, with total 94 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−7.39×10
10
u
31
+6.35×10
11
u
30
+· · ·+1.26×10
12
b1.15×10
12
, 3.24×
10
11
u
31
+2.77×10
12
u
30
+· · ·+2.52×10
12
a+2.92×10
11
, u
32
8u
31
+· · ·3u+4i
(i) Arc colorings
a
1
=
0
u
a
9
=
1
0
a
4
=
0.128590u
31
1.09768u
30
+ ··· + 5.24512u 0.115923
0.0586066u
31
0.503895u
30
+ ··· 1.40068u + 0.915030
a
10
=
1
u
2
a
8
=
0.0983513u
31
0.889506u
30
+ ··· + 3.00247u + 0.618797
0.0740836u
31
0.470529u
30
+ ··· 1.24670u + 0.527414
a
5
=
0.146540u
31
1.26945u
30
+ ··· + 4.04903u + 0.702930
0.0976318u
31
0.820411u
30
+ ··· 1.76926u + 1.02768
a
7
=
0.172435u
31
1.36004u
30
+ ··· + 1.75577u + 1.14621
0.0740836u
31
0.470529u
30
+ ··· 1.24670u + 0.527414
a
3
=
0.131853u
31
1.12891u
30
+ ··· + 1.57311u + 0.851141
0.0194438u
31
+ 0.129136u
30
+ ··· 1.66352u + 0.689740
a
2
=
0.0569748u
31
+ 0.488280u
30
+ ··· 2.43533u + 0.0685016
0.0390252u
31
+ 0.316515u
30
+ ··· + 0.368581u 0.112645
a
6
=
0.256919u
31
2.15298u
30
+ ··· + 3.47300u + 0.998503
0.136486u
31
0.905042u
30
+ ··· 2.46312u + 0.976685
a
12
=
u
u
3
+ u
a
11
=
u
2
+ 1
u
4
+ 2u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
204288482497
630271724827
u
31
1674264130767
630271724827
u
30
+ ··· +
8358771694435
630271724827
u +
744767795870
630271724827
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
u
32
+ 15u
31
+ ··· + 6u + 1
c
2
, c
4
, c
6
c
8
u
32
u
31
+ ··· + 3u
2
+ 1
c
3
u
32
+ 4u
31
+ ··· + 192u + 128
c
5
, c
11
u
32
+ 2u
31
+ ··· 3u + 2
c
9
, c
10
, c
12
u
32
+ 8u
31
+ ··· + 3u + 4
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
y
32
+ 11y
31
+ ··· + 2y + 1
c
2
, c
4
, c
6
c
8
y
32
+ 15y
31
+ ··· + 6y + 1
c
3
y
32
14y
31
+ ··· + 307200y + 16384
c
5
, c
11
y
32
+ 8y
31
+ ··· + 3y + 4
c
9
, c
10
, c
12
y
32
+ 32y
31
+ ··· + 239y + 16
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.999865 + 0.413471I
a = 0.208119 + 0.661905I
b = 0.483840 + 1.151180I
7.03351 + 5.35323I 7.40440 3.59025I
u = 0.999865 0.413471I
a = 0.208119 0.661905I
b = 0.483840 1.151180I
7.03351 5.35323I 7.40440 + 3.59025I
u = 0.689885 + 0.574928I
a = 0.507556 + 0.433180I
b = 0.644771 0.193099I
0.67877 2.26339I 1.01658 + 3.94466I
u = 0.689885 0.574928I
a = 0.507556 0.433180I
b = 0.644771 + 0.193099I
0.67877 + 2.26339I 1.01658 3.94466I
u = 0.071362 + 1.109170I
a = 0.066207 0.263550I
b = 0.462260 + 1.063600I
0.59844 5.94993I 0.50554 + 7.47801I
u = 0.071362 1.109170I
a = 0.066207 + 0.263550I
b = 0.462260 1.063600I
0.59844 + 5.94993I 0.50554 7.47801I
u = 0.856161 + 0.051151I
a = 0.159385 0.513993I
b = 0.308997 0.714151I
2.68984 + 1.38889I 4.39846 4.80710I
u = 0.856161 0.051151I
a = 0.159385 + 0.513993I
b = 0.308997 + 0.714151I
2.68984 1.38889I 4.39846 + 4.80710I
u = 0.926661 + 0.673958I
a = 1.33199 0.84627I
b = 0.530539 1.183740I
6.27266 11.59750I 5.82560 + 10.02458I
u = 0.926661 0.673958I
a = 1.33199 + 0.84627I
b = 0.530539 + 1.183740I
6.27266 + 11.59750I 5.82560 10.02458I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.284666 + 1.231480I
a = 0.003444 0.217087I
b = 0.044400 0.677264I
1.09703 2.68597I 3.28542 + 2.17424I
u = 0.284666 1.231480I
a = 0.003444 + 0.217087I
b = 0.044400 + 0.677264I
1.09703 + 2.68597I 3.28542 2.17424I
u = 0.134520 + 1.396800I
a = 1.98921 0.16991I
b = 0.578102 1.189990I
1.63545 + 10.10540I 0. 5.69385I
u = 0.134520 1.396800I
a = 1.98921 + 0.16991I
b = 0.578102 + 1.189990I
1.63545 10.10540I 0. + 5.69385I
u = 0.02346 + 1.43595I
a = 1.030550 + 0.853034I
b = 0.790287 0.361253I
6.70077 0.35933I 6.32864 + 0.I
u = 0.02346 1.43595I
a = 1.030550 0.853034I
b = 0.790287 + 0.361253I
6.70077 + 0.35933I 6.32864 + 0.I
u = 0.41491 + 1.42277I
a = 0.149267 0.036799I
b = 0.429768 + 1.091750I
1.327340 + 0.277330I 0
u = 0.41491 1.42277I
a = 0.149267 + 0.036799I
b = 0.429768 1.091750I
1.327340 0.277330I 0
u = 0.142919 + 0.470061I
a = 1.90622 + 0.84746I
b = 0.540356 + 0.720045I
1.30044 + 2.16188I 5.01054 3.83056I
u = 0.142919 0.470061I
a = 1.90622 0.84746I
b = 0.540356 0.720045I
1.30044 2.16188I 5.01054 + 3.83056I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.03544 + 1.51856I
a = 1.68660 0.54922I
b = 0.699799 + 0.849942I
8.08214 + 2.19583I 0
u = 0.03544 1.51856I
a = 1.68660 + 0.54922I
b = 0.699799 0.849942I
8.08214 2.19583I 0
u = 0.454564 + 0.152446I
a = 0.84677 2.43519I
b = 0.530198 1.146870I
3.38970 + 8.05749I 0.05529 6.30206I
u = 0.454564 0.152446I
a = 0.84677 + 2.43519I
b = 0.530198 + 1.146870I
3.38970 8.05749I 0.05529 + 6.30206I
u = 0.25659 + 1.55249I
a = 1.018930 + 0.749304I
b = 0.804182 0.329406I
6.33684 5.84113I 0
u = 0.25659 1.55249I
a = 1.018930 0.749304I
b = 0.804182 + 0.329406I
6.33684 + 5.84113I 0
u = 0.16262 + 1.57088I
a = 1.62580 0.57249I
b = 0.694814 + 0.875920I
7.92044 8.51420I 0
u = 0.16262 1.57088I
a = 1.62580 + 0.57249I
b = 0.694814 0.875920I
7.92044 + 8.51420I 0
u = 0.34020 + 1.59071I
a = 1.81440 0.16181I
b = 0.574377 1.201010I
1.0251 16.3375I 0
u = 0.34020 1.59071I
a = 1.81440 + 0.16181I
b = 0.574377 + 1.201010I
1.0251 + 16.3375I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.140182 + 0.315362I
a = 0.784849 + 1.141860I
b = 0.518758 0.447984I
1.051570 0.810934I 6.74474 + 3.92362I
u = 0.140182 0.315362I
a = 0.784849 1.141860I
b = 0.518758 + 0.447984I
1.051570 + 0.810934I 6.74474 3.92362I
8
II. I
u
2
= h−46u
26
a + 785u
26
+ · · · + 710a 2547, 2u
26
a 2u
26
+ · · · 7a +
10, u
27
7u
26
+ · · · 2u + 1i
(i) Arc colorings
a
1
=
0
u
a
9
=
1
0
a
4
=
a
0.0330223au
26
0.563532u
26
+ ··· 0.509691a + 1.82843
a
10
=
1
u
2
a
8
=
0.563532au
26
1.98636u
26
+ ··· 1.82843a + 3.96339
0.0567121au
26
+ 0.0330223u
26
+ ··· + 0.310122a 1.50969
a
5
=
u
24
+ 6u
23
+ ··· 4u + 1
u
24
6u
23
+ ··· 8u
3
+ 4u
2
a
7
=
0.506820au
26
1.95334u
26
+ ··· 1.51831a + 2.45370
0.0567121au
26
+ 0.0330223u
26
+ ··· + 0.310122a 1.50969
a
3
=
0.310122au
26
0.490309u
26
+ ··· + 0.569275a + 0.263460
0.124910au
26
0.433597u
26
+ ··· 0.506820a + 1.95334
a
2
=
0.185212au
26
+ 0.0567121u
26
+ ··· 1.07609a + 0.689878
0.152190au
26
+ 0.620244u
26
+ ··· + 0.433597a 2.13855
a
6
=
u
23
+ 6u
22
+ ··· + 8u
2
4u
u
23
+ 6u
22
+ ··· + 4u
2
u
a
12
=
u
u
3
+ u
a
11
=
u
2
+ 1
u
4
+ 2u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 4u
26
28u
25
+152u
24
584u
23
+1880u
22
5032u
21
+11712u
20
23756u
19
+42652u
18
67860u
17
+ 96136u
16
120956u
15
+ 134900u
14
132208u
13
+ 112636u
12
81568u
11
+
48448u
10
21704u
9
+5692u
8
+744u
7
1464u
6
+528u
5
+136u
4
188u
3
+76u
2
+12u 10
9
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
u
54
+ 31u
53
+ ··· + 16u
2
+ 1
c
2
, c
4
, c
6
c
8
u
54
u
53
+ ··· 2u + 1
c
3
(u
27
u
26
+ ··· + 4u 1)
2
c
5
, c
11
(u
27
u
26
+ ··· u
2
1)
2
c
9
, c
10
, c
12
(u
27
+ 7u
26
+ ··· 2u 1)
2
10
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
y
54
17y
53
+ ··· + 32y + 1
c
2
, c
4
, c
6
c
8
y
54
+ 31y
53
+ ··· + 16y
2
+ 1
c
3
(y
27
13y
26
+ ··· 2y 1)
2
c
5
, c
11
(y
27
+ 7y
26
+ ··· 2y 1)
2
c
9
, c
10
, c
12
(y
27
+ 27y
26
+ ··· + 14y 1)
2
11
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.851026 + 0.532141I
a = 0.307668 + 0.778974I
b = 0.344784 + 1.223910I
7.58873 2.79673I 8.25981 + 4.61920I
u = 0.851026 + 0.532141I
a = 1.75724 0.97566I
b = 0.405628 1.159490I
7.58873 2.79673I 8.25981 + 4.61920I
u = 0.851026 0.532141I
a = 0.307668 0.778974I
b = 0.344784 1.223910I
7.58873 + 2.79673I 8.25981 4.61920I
u = 0.851026 0.532141I
a = 1.75724 + 0.97566I
b = 0.405628 + 1.159490I
7.58873 + 2.79673I 8.25981 4.61920I
u = 0.881276 + 0.374809I
a = 0.289170 0.634254I
b = 0.382236 1.103440I
4.11296 + 0.98697I 4.82659 + 0.25321I
u = 0.881276 + 0.374809I
a = 0.324670 0.523733I
b = 0.673840 0.103585I
4.11296 + 0.98697I 4.82659 + 0.25321I
u = 0.881276 0.374809I
a = 0.289170 + 0.634254I
b = 0.382236 + 1.103440I
4.11296 0.98697I 4.82659 0.25321I
u = 0.881276 0.374809I
a = 0.324670 + 0.523733I
b = 0.673840 + 0.103585I
4.11296 0.98697I 4.82659 0.25321I
u = 0.845632 + 0.655604I
a = 0.394766 0.373032I
b = 0.812413 + 0.177201I
3.30741 6.65682I 2.80212 + 7.22011I
u = 0.845632 + 0.655604I
a = 1.48008 + 0.72677I
b = 0.494977 + 1.127680I
3.30741 6.65682I 2.80212 + 7.22011I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.845632 0.655604I
a = 0.394766 + 0.373032I
b = 0.812413 0.177201I
3.30741 + 6.65682I 2.80212 7.22011I
u = 0.845632 0.655604I
a = 1.48008 0.72677I
b = 0.494977 1.127680I
3.30741 + 6.65682I 2.80212 7.22011I
u = 0.099061 + 0.685673I
a = 0.394947 + 0.815475I
b = 0.466586 0.799061I
1.05207 2.01066I 4.08108 + 3.90758I
u = 0.099061 + 0.685673I
a = 1.217330 0.183901I
b = 0.549070 0.485974I
1.05207 2.01066I 4.08108 + 3.90758I
u = 0.099061 0.685673I
a = 0.394947 0.815475I
b = 0.466586 + 0.799061I
1.05207 + 2.01066I 4.08108 3.90758I
u = 0.099061 0.685673I
a = 1.217330 + 0.183901I
b = 0.549070 + 0.485974I
1.05207 + 2.01066I 4.08108 3.90758I
u = 0.033645 + 1.357360I
a = 0.015470 0.150550I
b = 0.274844 + 1.278800I
0.535824 + 0.961395I 1.27084 1.18503I
u = 0.033645 + 1.357360I
a = 2.44863 + 0.04055I
b = 0.464129 1.077600I
0.535824 + 0.961395I 1.27084 1.18503I
u = 0.033645 1.357360I
a = 0.015470 + 0.150550I
b = 0.274844 1.278800I
0.535824 0.961395I 1.27084 + 1.18503I
u = 0.033645 1.357360I
a = 2.44863 0.04055I
b = 0.464129 + 1.077600I
0.535824 0.961395I 1.27084 + 1.18503I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.119558 + 1.364110I
a = 0.76183 1.36750I
b = 0.344719 + 0.341856I
1.58939 2.83072I 1.79804 + 3.74350I
u = 0.119558 + 1.364110I
a = 0.0108437 + 0.0806079I
b = 0.084381 1.175530I
1.58939 2.83072I 1.79804 + 3.74350I
u = 0.119558 1.364110I
a = 0.76183 + 1.36750I
b = 0.344719 0.341856I
1.58939 + 2.83072I 1.79804 3.74350I
u = 0.119558 1.364110I
a = 0.0108437 0.0806079I
b = 0.084381 + 1.175530I
1.58939 + 2.83072I 1.79804 3.74350I
u = 0.08960 + 1.41179I
a = 0.960076 0.790976I
b = 0.884320 + 0.254207I
4.44628 + 4.75862I 3.32590 2.41055I
u = 0.08960 + 1.41179I
a = 2.05371 + 0.00645I
b = 0.577308 + 1.120420I
4.44628 + 4.75862I 3.32590 2.41055I
u = 0.08960 1.41179I
a = 0.960076 + 0.790976I
b = 0.884320 0.254207I
4.44628 4.75862I 3.32590 + 2.41055I
u = 0.08960 1.41179I
a = 2.05371 0.00645I
b = 0.577308 1.120420I
4.44628 4.75862I 3.32590 + 2.41055I
u = 0.25231 + 1.41767I
a = 0.704744 1.061140I
b = 0.433641 + 0.198875I
1.41036 3.05015I 0. + 1.99178I
u = 0.25231 + 1.41767I
a = 0.0734789 + 0.0398264I
b = 0.155570 1.155430I
1.41036 3.05015I 0. + 1.99178I
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.25231 1.41767I
a = 0.704744 + 1.061140I
b = 0.433641 0.198875I
1.41036 + 3.05015I 0. 1.99178I
u = 0.25231 1.41767I
a = 0.0734789 0.0398264I
b = 0.155570 + 1.155430I
1.41036 + 3.05015I 0. 1.99178I
u = 0.10205 + 1.54134I
a = 1.46611 + 0.70019I
b = 0.732596 0.699246I
8.43216 3.15301I 5.82291 + 0.I
u = 0.10205 + 1.54134I
a = 1.44220 + 0.75303I
b = 0.722594 0.728691I
8.43216 3.15301I 5.82291 + 0.I
u = 0.10205 1.54134I
a = 1.46611 0.70019I
b = 0.732596 + 0.699246I
8.43216 + 3.15301I 5.82291 + 0.I
u = 0.10205 1.54134I
a = 1.44220 0.75303I
b = 0.722594 + 0.728691I
8.43216 + 3.15301I 5.82291 + 0.I
u = 0.30604 + 1.51914I
a = 0.1073610 0.0682683I
b = 0.294293 + 1.287200I
0.99741 7.02686I 0. + 6.08794I
u = 0.30604 + 1.51914I
a = 2.24569 0.03447I
b = 0.474570 1.100580I
0.99741 7.02686I 0. + 6.08794I
u = 0.30604 1.51914I
a = 0.1073610 + 0.0682683I
b = 0.294293 1.287200I
0.99741 + 7.02686I 0. 6.08794I
u = 0.30604 1.51914I
a = 2.24569 + 0.03447I
b = 0.474570 + 1.100580I
0.99741 + 7.02686I 0. 6.08794I
15
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.357506 + 0.271060I
a = 1.255620 + 0.003386I
b = 0.067219 1.140920I
3.64210 0.95364I 2.23281 + 7.10310I
u = 0.357506 + 0.271060I
a = 2.29905 3.35138I
b = 0.179781 + 0.840004I
3.64210 0.95364I 2.23281 + 7.10310I
u = 0.357506 0.271060I
a = 1.255620 0.003386I
b = 0.067219 + 1.140920I
3.64210 + 0.95364I 2.23281 7.10310I
u = 0.357506 0.271060I
a = 2.29905 + 3.35138I
b = 0.179781 0.840004I
3.64210 + 0.95364I 2.23281 7.10310I
u = 0.351036 + 0.182657I
a = 0.976869 0.429852I
b = 0.738069 + 0.235848I
0.74562 + 3.27708I 3.27794 2.87566I
u = 0.351036 + 0.182657I
a = 1.40048 + 2.62389I
b = 0.480202 + 1.056470I
0.74562 + 3.27708I 3.27794 2.87566I
u = 0.351036 0.182657I
a = 0.976869 + 0.429852I
b = 0.738069 0.235848I
0.74562 3.27708I 3.27794 + 2.87566I
u = 0.351036 0.182657I
a = 1.40048 2.62389I
b = 0.480202 1.056470I
0.74562 3.27708I 3.27794 + 2.87566I
u = 0.30716 + 1.57661I
a = 0.950516 0.672058I
b = 0.895765 + 0.235028I
3.93318 10.97750I 0
u = 0.30716 + 1.57661I
a = 1.89805 + 0.02059I
b = 0.573651 + 1.137950I
3.93318 10.97750I 0
16
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.30716 1.57661I
a = 0.950516 + 0.672058I
b = 0.895765 0.235028I
3.93318 + 10.97750I 0
u = 0.30716 1.57661I
a = 1.89805 0.02059I
b = 0.573651 1.137950I
3.93318 + 10.97750I 0
u = 0.294686
a = 0.41605 + 3.96773I
b = 0.324823 + 1.147400I
4.80157 2.25830
u = 0.294686
a = 0.41605 3.96773I
b = 0.324823 1.147400I
4.80157 2.25830
17
III. I
u
3
= hb u + 1, a 1, u
2
u + 1i
(i) Arc colorings
a
1
=
0
u
a
9
=
1
0
a
4
=
1
u 1
a
10
=
1
u 1
a
8
=
u
u
a
5
=
0
u
a
7
=
0
u
a
3
=
1
0
a
2
=
u
u
a
6
=
1
u + 1
a
12
=
u
u 1
a
11
=
u
u 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12u 6
18
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
4
c
5
, c
6
, c
7
c
8
, c
9
, c
10
c
11
, c
12
u
2
+ u + 1
c
3
u
2
u + 1
19
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
6
c
7
, c
8
, c
9
c
10
, c
11
, c
12
y
2
+ y + 1
20
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 1.00000
b = 0.500000 + 0.866025I
6.08965I 0. + 10.39230I
u = 0.500000 0.866025I
a = 1.00000
b = 0.500000 0.866025I
6.08965I 0. 10.39230I
21
IV. I
u
4
= hb
2
+ 1, u
2
+ a u + 2, u
3
u
2
+ 2u 1i
(i) Arc colorings
a
1
=
0
u
a
9
=
1
0
a
4
=
u
2
+ u 2
b
a
10
=
1
u
2
a
8
=
u
2
b + bu 2b + 1
1
a
5
=
b
0
a
7
=
u
2
b + bu 2b
1
a
3
=
u
2
+ u 2
b
a
2
=
u
2
+ u 2
b + u
a
6
=
0
bu
a
12
=
u
u
2
u + 1
a
11
=
u
2
+ 1
u
2
u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
2
+ 4u 12
22
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
(u 1)
6
c
2
, c
4
, c
6
c
8
(u
2
+ 1)
3
c
3
u
6
c
5
, c
11
u
6
+ u
4
+ 2u
2
+ 1
c
9
, c
10
(u
3
u
2
+ 2u 1)
2
c
12
(u
3
+ u
2
+ 2u + 1)
2
23
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
(y 1)
6
c
2
, c
4
, c
6
c
8
(y + 1)
6
c
3
y
6
c
5
, c
11
(y
3
+ y
2
+ 2y + 1)
2
c
9
, c
10
, c
12
(y
3
+ 3y
2
+ 2y 1)
2
24
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.215080 + 1.307140I
a = 0.122561 + 0.744862I
b = 1.000000I
0.26574 2.82812I 4.49024 + 2.97945I
u = 0.215080 + 1.307140I
a = 0.122561 + 0.744862I
b = 1.000000I
0.26574 2.82812I 4.49024 + 2.97945I
u = 0.215080 1.307140I
a = 0.122561 0.744862I
b = 1.000000I
0.26574 + 2.82812I 4.49024 2.97945I
u = 0.215080 1.307140I
a = 0.122561 0.744862I
b = 1.000000I
0.26574 + 2.82812I 4.49024 2.97945I
u = 0.569840
a = 1.75488
b = 1.000000I
4.40332 11.0200
u = 0.569840
a = 1.75488
b = 1.000000I
4.40332 11.0200
25
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
7
((u 1)
6
)(u
2
+ u + 1)(u
32
+ 15u
31
+ ··· + 6u + 1)
· (u
54
+ 31u
53
+ ··· + 16u
2
+ 1)
c
2
, c
4
, c
6
c
8
((u
2
+ 1)
3
)(u
2
+ u + 1)(u
32
u
31
+ ··· + 3u
2
+ 1)(u
54
u
53
+ ··· 2u + 1)
c
3
u
6
(u
2
u + 1)(u
27
u
26
+ ··· + 4u 1)
2
· (u
32
+ 4u
31
+ ··· + 192u + 128)
c
5
, c
11
(u
2
+ u + 1)(u
6
+ u
4
+ 2u
2
+ 1)(u
27
u
26
+ ··· u
2
1)
2
· (u
32
+ 2u
31
+ ··· 3u + 2)
c
9
, c
10
(u
2
+ u + 1)(u
3
u
2
+ 2u 1)
2
(u
27
+ 7u
26
+ ··· 2u 1)
2
· (u
32
+ 8u
31
+ ··· + 3u + 4)
c
12
(u
2
+ u + 1)(u
3
+ u
2
+ 2u + 1)
2
(u
27
+ 7u
26
+ ··· 2u 1)
2
· (u
32
+ 8u
31
+ ··· + 3u + 4)
26
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
7
((y 1)
6
)(y
2
+ y + 1)(y
32
+ 11y
31
+ ··· + 2y + 1)
· (y
54
17y
53
+ ··· + 32y + 1)
c
2
, c
4
, c
6
c
8
((y + 1)
6
)(y
2
+ y + 1)(y
32
+ 15y
31
+ ··· + 6y + 1)
· (y
54
+ 31y
53
+ ··· + 16y
2
+ 1)
c
3
y
6
(y
2
+ y + 1)(y
27
13y
26
+ ··· 2y 1)
2
· (y
32
14y
31
+ ··· + 307200y + 16384)
c
5
, c
11
(y
2
+ y + 1)(y
3
+ y
2
+ 2y + 1)
2
(y
27
+ 7y
26
+ ··· 2y 1)
2
· (y
32
+ 8y
31
+ ··· + 3y + 4)
c
9
, c
10
, c
12
(y
2
+ y + 1)(y
3
+ 3y
2
+ 2y 1)
2
(y
27
+ 27y
26
+ ··· + 14y 1)
2
· (y
32
+ 32y
31
+ ··· + 239y + 16)
27