10
16
(K10a
115
)
A knot diagram
1
Linearized knot diagam
6 8 9 10 2 1 5 4 3 7
Solving Sequence
2,6
1 7 5 8 3 10 4 9
c
1
c
6
c
5
c
7
c
2
c
10
c
4
c
9
c
3
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= hu
23
u
22
+ ··· 2u + 1i
* 1 irreducible components of dim
C
= 0, with total 23 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
23
u
22
+ · · · 2u + 1i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
1
=
1
u
2
a
7
=
u
u
3
+ u
a
5
=
u
u
a
8
=
u
5
2u
3
+ u
u
5
+ 3u
3
+ u
a
3
=
u
10
5u
8
6u
6
+ u
4
+ u
2
+ 1
u
10
+ 6u
8
+ 11u
6
+ 6u
4
+ u
2
a
10
=
u
2
+ 1
u
4
+ 2u
2
a
4
=
u
7
+ 4u
5
+ 4u
3
u
9
+ 5u
7
+ 7u
5
+ 2u
3
+ u
a
9
=
u
21
12u
19
+ ··· 2u
3
+ u
u
22
+ u
21
+ ··· u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 4u
22
+4u
21
56u
20
+52u
19
324u
18
+276u
17
996u
16
+764u
15
1744u
14
+1172u
13
1748u
12
+1000u
11
988u
10
+504u
9
304u
8
+188u
7
8u
6
+32u
5
+12u
4
+12u
3
+4u
2
16u+2
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
, c
6
c
10
u
23
u
22
+ ··· 2u + 1
c
2
, c
4
u
23
u
22
+ ··· + 4u + 5
c
3
, c
8
, c
9
u
23
+ u
22
+ ··· + 2u + 1
c
7
u
23
7u
22
+ ··· + 40u 17
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
, c
6
c
10
y
23
+ 27y
22
+ ··· 4y 1
c
2
, c
4
y
23
17y
22
+ ··· 144y 25
c
3
, c
8
, c
9
y
23
+ 19y
22
+ ··· 4y 1
c
7
y
23
9y
22
+ ··· + 1260y 289
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.473302 + 0.738923I
0.16340 + 7.25342I 3.09734 7.25802I
u = 0.473302 0.738923I
0.16340 7.25342I 3.09734 + 7.25802I
u = 0.413689 + 0.761868I
4.21185 3.22031I 8.22079 + 4.90443I
u = 0.413689 0.761868I
4.21185 + 3.22031I 8.22079 4.90443I
u = 0.324148 + 0.802707I
0.817157 0.745308I 5.08009 0.73522I
u = 0.324148 0.802707I
0.817157 + 0.745308I 5.08009 + 0.73522I
u = 0.477903 + 0.451361I
4.96840 1.68040I 2.82272 + 4.29991I
u = 0.477903 0.451361I
4.96840 + 1.68040I 2.82272 4.29991I
u = 0.581337 + 0.108709I
2.00599 3.66457I 0.82434 + 2.67133I
u = 0.581337 0.108709I
2.00599 + 3.66457I 0.82434 2.67133I
u = 0.546774
2.00773 4.01170
u = 0.228067 + 0.467269I
0.140168 + 0.925919I 2.94249 7.44214I
u = 0.228067 0.467269I
0.140168 0.925919I 2.94249 + 7.44214I
u = 0.08584 + 1.50808I
1.46467 3.53591I 1.36507 + 3.24061I
u = 0.08584 1.50808I
1.46467 + 3.53591I 1.36507 3.24061I
u = 0.03322 + 1.55779I
7.11725 + 1.68405I 6.35516 3.83025I
u = 0.03322 1.55779I
7.11725 1.68405I 6.35516 + 3.83025I
u = 0.13674 + 1.61894I
7.87123 + 9.54664I 5.28748 5.57899I
u = 0.13674 1.61894I
7.87123 9.54664I 5.28748 + 5.57899I
u = 0.11785 + 1.62483I
12.38020 5.22748I 9.66631 + 3.33432I
u = 0.11785 1.62483I
12.38020 + 5.22748I 9.66631 3.33432I
u = 0.09185 + 1.62814I
9.14246 + 0.83337I 6.62647 + 0.43888I
u = 0.09185 1.62814I
9.14246 0.83337I 6.62647 0.43888I
5
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
5
, c
6
c
10
u
23
u
22
+ ··· 2u + 1
c
2
, c
4
u
23
u
22
+ ··· + 4u + 5
c
3
, c
8
, c
9
u
23
+ u
22
+ ··· + 2u + 1
c
7
u
23
7u
22
+ ··· + 40u 17
6
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
5
, c
6
c
10
y
23
+ 27y
22
+ ··· 4y 1
c
2
, c
4
y
23
17y
22
+ ··· 144y 25
c
3
, c
8
, c
9
y
23
+ 19y
22
+ ··· 4y 1
c
7
y
23
9y
22
+ ··· + 1260y 289
7