12a
0211
(K12a
0211
)
A knot diagram
1
Linearized knot diagam
3 6 7 9 2 5 11 4 12 1 8 10
Solving Sequence
4,8
9
5,12
10 1 11 7 3 6 2
c
8
c
4
c
9
c
12
c
11
c
7
c
3
c
6
c
2
c
1
, c
5
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−9.86194 × 10
263
u
97
+ 1.50956 × 10
264
u
96
+ ··· + 4.00373 × 10
264
b + 1.42422 × 10
266
,
1.21954 × 10
264
u
97
1.97917 × 10
264
u
96
+ ··· + 8.00746 × 10
264
a 1.99719 × 10
266
,
u
98
2u
97
+ ··· 160u + 64i
I
u
2
= hb, 2u
7
3u
6
5u
5
+ 7u
4
+ 4u
3
3u
2
+ a 4, u
8
u
7
3u
6
+ 2u
5
+ 3u
4
2u 1i
I
v
1
= ha, 26v
5
33v
4
+ 317v
3
123v
2
+ 413b + 89v 685, v
6
3v
5
+ 15v
4
24v
3
+ 11v
2
6v + 1i
* 3 irreducible components of dim
C
= 0, with total 112 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−9.86 × 10
263
u
97
+ 1.51 × 10
264
u
96
+ · · · + 4.00 × 10
264
b + 1.42 ×
10
266
, 1.22 × 10
264
u
97
1.98 × 10
264
u
96
+ · · · + 8.01 × 10
264
a 2.00 ×
10
266
, u
98
2u
97
+ · · · 160u + 64i
(i) Arc colorings
a
4
=
0
u
a
8
=
1
0
a
9
=
1
u
2
a
5
=
u
u
3
+ u
a
12
=
0.152300u
97
+ 0.247165u
96
+ ··· 4.59357u + 24.9416
0.246319u
97
0.377039u
96
+ ··· + 7.83550u 35.5724
a
10
=
0.0398059u
97
+ 0.0702429u
96
+ ··· 3.05431u + 8.48553
0.411031u
97
+ 0.653363u
96
+ ··· 7.40277u + 62.7622
a
1
=
0.00297584u
97
0.00863836u
96
+ ··· + 1.05873u 0.848853
0.411031u
97
+ 0.653363u
96
+ ··· 7.40277u + 62.7622
a
11
=
0.398619u
97
+ 0.624205u
96
+ ··· 12.4291u + 60.5140
0.246319u
97
0.377039u
96
+ ··· + 7.83550u 35.5724
a
7
=
0.402842u
97
+ 0.642002u
96
+ ··· 5.72372u + 61.7414
0.405818u
97
0.650640u
96
+ ··· + 6.78245u 62.5902
a
3
=
0.0603712u
97
0.0945033u
96
+ ··· + 3.51045u 8.93865
0.286712u
97
+ 0.446756u
96
+ ··· 6.09763u + 42.5150
a
6
=
0.402533u
97
+ 0.632225u
96
+ ··· 6.75744u + 60.4412
0.389959u
97
0.628287u
96
+ ··· + 6.33110u 60.7040
a
2
=
0.0840663u
97
0.138202u
96
+ ··· + 6.02197u 11.8518
0.634821u
97
+ 0.986175u
96
+ ··· 17.0563u + 92.8076
(ii) Obstruction class = 1
(iii) Cusp Shapes = 1.75154u
97
+ 2.69397u
96
+ ··· 90.1293u + 259.318
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
u
98
+ 32u
97
+ ··· + 46u + 1
c
2
, c
5
u
98
+ 4u
97
+ ··· + 14u + 1
c
3
u
98
4u
97
+ ··· + 19016u + 4129
c
4
, c
8
u
98
+ 2u
97
+ ··· + 160u + 64
c
7
, c
11
u
98
4u
97
+ ··· 128u + 256
c
9
, c
10
, c
12
u
98
+ 12u
97
+ ··· 31u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
98
+ 72y
97
+ ··· 2334y + 1
c
2
, c
5
y
98
32y
97
+ ··· 46y + 1
c
3
y
98
+ 76y
96
+ ··· 284998790y + 17048641
c
4
, c
8
y
98
42y
97
+ ··· 87040y + 4096
c
7
, c
11
y
98
60y
97
+ ··· 3457024y + 65536
c
9
, c
10
, c
12
y
98
96y
97
+ ··· 903y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.836034 + 0.535484I
a = 0.62066 1.46991I
b = 0.276978 1.030340I
2.71965 2.17187I 0
u = 0.836034 0.535484I
a = 0.62066 + 1.46991I
b = 0.276978 + 1.030340I
2.71965 + 2.17187I 0
u = 1.007890 + 0.057843I
a = 0.515193 + 1.015350I
b = 0.482660 + 0.606015I
1.69730 0.04707I 0
u = 1.007890 0.057843I
a = 0.515193 1.015350I
b = 0.482660 0.606015I
1.69730 + 0.04707I 0
u = 0.988943 + 0.038650I
a = 0.298767 + 1.109500I
b = 0.915779 + 0.645889I
0.81536 + 3.65505I 0
u = 0.988943 0.038650I
a = 0.298767 1.109500I
b = 0.915779 0.645889I
0.81536 3.65505I 0
u = 0.640994 + 0.748545I
a = 1.24753 1.31283I
b = 0.099282 1.047820I
6.60141 1.31084I 0
u = 0.640994 0.748545I
a = 1.24753 + 1.31283I
b = 0.099282 + 1.047820I
6.60141 + 1.31084I 0
u = 0.958058 + 0.352709I
a = 0.462382 + 0.808485I
b = 1.122110 + 0.350042I
1.92679 1.50494I 0
u = 0.958058 0.352709I
a = 0.462382 0.808485I
b = 1.122110 0.350042I
1.92679 + 1.50494I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.945192 + 0.184243I
a = 0.063153 + 1.354140I
b = 0.690539 + 0.806870I
1.09894 0.93181I 0
u = 0.945192 0.184243I
a = 0.063153 1.354140I
b = 0.690539 0.806870I
1.09894 + 0.93181I 0
u = 0.566049 + 0.872784I
a = 0.561625 0.370323I
b = 1.047790 + 0.313579I
4.33302 0.85349I 0
u = 0.566049 0.872784I
a = 0.561625 + 0.370323I
b = 1.047790 0.313579I
4.33302 + 0.85349I 0
u = 0.577362 + 0.766403I
a = 1.41361 + 1.28993I
b = 0.174263 + 1.005380I
6.01938 4.43105I 0
u = 0.577362 0.766403I
a = 1.41361 1.28993I
b = 0.174263 1.005380I
6.01938 + 4.43105I 0
u = 0.413184 + 0.978752I
a = 0.192652 0.001510I
b = 1.327370 0.296247I
8.16464 2.11391I 0
u = 0.413184 0.978752I
a = 0.192652 + 0.001510I
b = 1.327370 + 0.296247I
8.16464 + 2.11391I 0
u = 0.523046 + 0.927802I
a = 0.550866 + 0.336203I
b = 1.026850 0.381970I
3.59665 + 6.49124I 0
u = 0.523046 0.927802I
a = 0.550866 0.336203I
b = 1.026850 + 0.381970I
3.59665 6.49124I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.945040 + 0.577805I
a = 0.464812 0.635543I
b = 1.252900 0.141177I
3.98973 + 1.09003I 0
u = 0.945040 0.577805I
a = 0.464812 + 0.635543I
b = 1.252900 + 0.141177I
3.98973 1.09003I 0
u = 0.685394 + 0.556168I
a = 0.51862 + 2.07030I
b = 0.966579 + 0.148747I
4.79276 + 3.49348I 0. 7.89856I
u = 0.685394 0.556168I
a = 0.51862 2.07030I
b = 0.966579 0.148747I
4.79276 3.49348I 0. + 7.89856I
u = 0.295338 + 0.821202I
a = 0.653295 + 0.245041I
b = 0.779521 0.351251I
1.36442 + 1.59603I 6.13954 4.68221I
u = 0.295338 0.821202I
a = 0.653295 0.245041I
b = 0.779521 + 0.351251I
1.36442 1.59603I 6.13954 + 4.68221I
u = 1.072730 + 0.347020I
a = 0.084885 1.334090I
b = 0.898101 0.581765I
2.07276 0.59423I 0
u = 1.072730 0.347020I
a = 0.084885 + 1.334090I
b = 0.898101 + 0.581765I
2.07276 + 0.59423I 0
u = 1.009660 + 0.504740I
a = 0.429556 + 1.236740I
b = 0.466522 + 1.159040I
0.85776 + 4.36308I 0
u = 1.009660 0.504740I
a = 0.429556 1.236740I
b = 0.466522 1.159040I
0.85776 4.36308I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.004060 + 0.523832I
a = 0.16333 + 1.43855I
b = 1.054600 + 0.456626I
0.08244 + 4.26327I 0
u = 1.004060 0.523832I
a = 0.16333 1.43855I
b = 1.054600 0.456626I
0.08244 4.26327I 0
u = 1.003640 + 0.555239I
a = 0.429213 + 0.654904I
b = 1.293330 + 0.197292I
3.15484 6.74893I 0
u = 1.003640 0.555239I
a = 0.429213 0.654904I
b = 1.293330 0.197292I
3.15484 + 6.74893I 0
u = 0.645737 + 0.552571I
a = 0.191518 + 0.001250I
b = 1.66186 0.25832I
12.53660 1.88182I 4.98464 2.28984I
u = 0.645737 0.552571I
a = 0.191518 0.001250I
b = 1.66186 + 0.25832I
12.53660 + 1.88182I 4.98464 + 2.28984I
u = 1.036730 + 0.499877I
a = 0.97362 + 1.91004I
b = 1.310510 + 0.383002I
10.82510 0.18571I 0
u = 1.036730 0.499877I
a = 0.97362 1.91004I
b = 1.310510 0.383002I
10.82510 + 0.18571I 0
u = 0.097083 + 0.832554I
a = 0.645250 + 0.020161I
b = 0.410288 0.453030I
1.80058 2.93404I 2.97782 + 1.88762I
u = 0.097083 0.832554I
a = 0.645250 0.020161I
b = 0.410288 + 0.453030I
1.80058 + 2.93404I 2.97782 1.88762I
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.213026 + 1.154770I
a = 0.189633 + 0.002822I
b = 1.149250 + 0.171052I
6.34419 1.80278I 0
u = 0.213026 1.154770I
a = 0.189633 0.002822I
b = 1.149250 0.171052I
6.34419 + 1.80278I 0
u = 1.040490 + 0.550713I
a = 0.76305 1.93141I
b = 1.327380 0.426303I
11.23540 + 6.34533I 0
u = 1.040490 0.550713I
a = 0.76305 + 1.93141I
b = 1.327380 + 0.426303I
11.23540 6.34533I 0
u = 1.109200 + 0.410240I
a = 0.405843 + 0.678327I
b = 0.187608 + 0.716386I
0.53991 1.97315I 0
u = 1.109200 0.410240I
a = 0.405843 0.678327I
b = 0.187608 0.716386I
0.53991 + 1.97315I 0
u = 0.674999 + 0.448882I
a = 0.191020 0.001236I
b = 1.71246 + 0.21779I
12.08790 3.77750I 2.50485 + 8.33450I
u = 0.674999 0.448882I
a = 0.191020 + 0.001236I
b = 1.71246 0.21779I
12.08790 + 3.77750I 2.50485 8.33450I
u = 1.193260 + 0.019414I
a = 0.299196 + 1.016150I
b = 0.586869 + 0.776976I
3.03641 + 4.53724I 0
u = 1.193260 0.019414I
a = 0.299196 1.016150I
b = 0.586869 0.776976I
3.03641 4.53724I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.004200 + 0.653502I
a = 0.602734 1.133920I
b = 0.326421 1.294080I
5.49575 4.02919I 0
u = 1.004200 0.653502I
a = 0.602734 + 1.133920I
b = 0.326421 + 1.294080I
5.49575 + 4.02919I 0
u = 0.600377 + 0.503296I
a = 0.54654 2.46979I
b = 0.890404 0.099731I
4.41694 + 2.33204I 2.30899 + 3.70876I
u = 0.600377 0.503296I
a = 0.54654 + 2.46979I
b = 0.890404 + 0.099731I
4.41694 2.33204I 2.30899 3.70876I
u = 0.238587 + 0.745701I
a = 0.669615 + 0.070375I
b = 0.264277 + 0.421377I
2.12182 2.26046I 2.69224 + 4.33377I
u = 0.238587 0.745701I
a = 0.669615 0.070375I
b = 0.264277 0.421377I
2.12182 + 2.26046I 2.69224 4.33377I
u = 1.204290 + 0.213731I
a = 0.350525 0.833986I
b = 0.353431 0.806311I
6.24882 + 1.48049I 0
u = 1.204290 0.213731I
a = 0.350525 + 0.833986I
b = 0.353431 + 0.806311I
6.24882 1.48049I 0
u = 1.046130 + 0.645338I
a = 0.560990 + 1.100540I
b = 0.373512 + 1.324650I
4.59791 + 9.79417I 0
u = 1.046130 0.645338I
a = 0.560990 1.100540I
b = 0.373512 1.324650I
4.59791 9.79417I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.635410 + 1.087650I
a = 0.196297 0.001060I
b = 1.32653 0.52109I
10.54050 4.32714I 0
u = 0.635410 1.087650I
a = 0.196297 + 0.001060I
b = 1.32653 + 0.52109I
10.54050 + 4.32714I 0
u = 0.493999 + 1.159450I
a = 0.194594 + 0.003965I
b = 1.200110 + 0.420492I
4.11910 + 4.28811I 0
u = 0.493999 1.159450I
a = 0.194594 0.003965I
b = 1.200110 0.420492I
4.11910 4.28811I 0
u = 1.130640 + 0.562921I
a = 0.178921 1.268500I
b = 1.139660 0.572230I
3.85649 6.65841I 0
u = 1.130640 0.562921I
a = 0.178921 + 1.268500I
b = 1.139660 + 0.572230I
3.85649 + 6.65841I 0
u = 0.571342 + 0.450763I
a = 0.799690 0.588134I
b = 0.876514 0.040008I
1.381480 0.079256I 5.31373 0.44192I
u = 0.571342 0.450763I
a = 0.799690 + 0.588134I
b = 0.876514 + 0.040008I
1.381480 + 0.079256I 5.31373 + 0.44192I
u = 1.202490 + 0.418464I
a = 0.338934 0.689561I
b = 0.169739 0.787709I
1.65592 + 7.43184I 0
u = 1.202490 0.418464I
a = 0.338934 + 0.689561I
b = 0.169739 + 0.787709I
1.65592 7.43184I 0
11
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.085590 + 0.676848I
a = 0.316501 + 1.272240I
b = 1.241290 + 0.481735I
2.71709 + 6.60282I 0
u = 1.085590 0.676848I
a = 0.316501 1.272240I
b = 1.241290 0.481735I
2.71709 6.60282I 0
u = 0.647434 + 1.135080I
a = 0.197276 + 0.001542I
b = 1.289260 + 0.557225I
9.53500 + 10.09170I 0
u = 0.647434 1.135080I
a = 0.197276 0.001542I
b = 1.289260 0.557225I
9.53500 10.09170I 0
u = 1.123060 + 0.685056I
a = 0.305837 1.231590I
b = 1.265010 0.517604I
1.72661 12.41470I 0
u = 1.123060 0.685056I
a = 0.305837 + 1.231590I
b = 1.265010 + 0.517604I
1.72661 + 12.41470I 0
u = 1.172330 + 0.684132I
a = 0.29816 1.53310I
b = 1.273590 0.614310I
5.85743 + 8.14777I 0
u = 1.172330 0.684132I
a = 0.29816 + 1.53310I
b = 1.273590 + 0.614310I
5.85743 8.14777I 0
u = 1.232490 + 0.616049I
a = 0.45590 + 1.35591I
b = 1.172930 + 0.574754I
3.06376 4.20801I 0
u = 1.232490 0.616049I
a = 0.45590 1.35591I
b = 1.172930 0.574754I
3.06376 + 4.20801I 0
12
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.161510 + 0.793472I
a = 0.02680 1.54017I
b = 1.35879 0.71390I
8.8284 + 11.1189I 0
u = 1.161510 0.793472I
a = 0.02680 + 1.54017I
b = 1.35879 + 0.71390I
8.8284 11.1189I 0
u = 0.395569 + 0.441362I
a = 1.83851 + 3.13114I
b = 0.042317 + 0.538401I
0.744221 0.347993I 10.77580 1.35993I
u = 0.395569 0.441362I
a = 1.83851 3.13114I
b = 0.042317 0.538401I
0.744221 + 0.347993I 10.77580 + 1.35993I
u = 1.42094 + 0.14910I
a = 1.037220 + 0.312565I
b = 0.917859 + 0.126132I
1.73398 1.68885I 0
u = 1.42094 0.14910I
a = 1.037220 0.312565I
b = 0.917859 0.126132I
1.73398 + 1.68885I 0
u = 1.22262 + 0.74228I
a = 0.15511 + 1.41210I
b = 1.25942 + 0.70773I
1.75267 11.04810I 0
u = 1.22262 0.74228I
a = 0.15511 1.41210I
b = 1.25942 0.70773I
1.75267 + 11.04810I 0
u = 1.17840 + 0.81196I
a = 0.00730 + 1.49544I
b = 1.35718 + 0.74462I
7.7850 17.0818I 0
u = 1.17840 0.81196I
a = 0.00730 1.49544I
b = 1.35718 0.74462I
7.7850 + 17.0818I 0
13
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.50976 + 0.23215I
a = 0.815003 0.384063I
b = 0.836256 0.194442I
0.01719 + 7.01679I 0
u = 1.50976 0.23215I
a = 0.815003 + 0.384063I
b = 0.836256 + 0.194442I
0.01719 7.01679I 0
u = 1.56343
a = 0.832965
b = 0.802385
4.01787 0
u = 0.428199
a = 0.190716
b = 1.68418
7.58133 22.6420
u = 0.410800
a = 1.26130
b = 0.180308
0.884136 11.8670
u = 0.002190 + 0.400188I
a = 8.30916 0.20003I
b = 0.448143 + 0.052970I
4.27018 + 2.77355I 35.2011 5.5393I
u = 0.002190 0.400188I
a = 8.30916 + 0.20003I
b = 0.448143 0.052970I
4.27018 2.77355I 35.2011 + 5.5393I
u = 0.372816
a = 2.12859
b = 0.521179
1.14364 10.4810
14
II. I
u
2
=
hb, 2u
7
3u
6
5u
5
+7u
4
+4u
3
3u
2
+a4, u
8
u
7
3u
6
+2u
5
+3u
4
2u1i
(i) Arc colorings
a
4
=
0
u
a
8
=
1
0
a
9
=
1
u
2
a
5
=
u
u
3
+ u
a
12
=
2u
7
+ 3u
6
+ 5u
5
7u
4
4u
3
+ 3u
2
+ 4
0
a
10
=
2u
7
+ 3u
6
+ 5u
5
7u
4
4u
3
+ 3u
2
+ 5
u
2
a
1
=
1
u
2
a
11
=
2u
7
+ 3u
6
+ 5u
5
7u
4
4u
3
+ 3u
2
+ 4
0
a
7
=
1
0
a
3
=
u
u
a
6
=
u
4
+ u
2
+ 1
u
6
+ 2u
4
u
2
a
2
=
u
4
u
2
1
u
4
2u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8u
7
16u
6
18u
5
+ 36u
4
+ 15u
3
13u
2
4u 25
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
8
3u
7
+ 7u
6
10u
5
+ 11u
4
10u
3
+ 6u
2
4u + 1
c
2
u
8
u
7
u
6
+ 2u
5
+ u
4
2u
3
+ 2u 1
c
3
, c
4
u
8
+ u
7
3u
6
2u
5
+ 3u
4
+ 2u 1
c
5
u
8
+ u
7
u
6
2u
5
+ u
4
+ 2u
3
2u 1
c
6
u
8
+ 3u
7
+ 7u
6
+ 10u
5
+ 11u
4
+ 10u
3
+ 6u
2
+ 4u + 1
c
7
, c
11
u
8
c
8
u
8
u
7
3u
6
+ 2u
5
+ 3u
4
2u 1
c
9
, c
10
(u + 1)
8
c
12
(u 1)
8
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
8
+ 5y
7
+ 11y
6
+ 6y
5
17y
4
34y
3
22y
2
4y + 1
c
2
, c
5
y
8
3y
7
+ 7y
6
10y
5
+ 11y
4
10y
3
+ 6y
2
4y + 1
c
3
, c
4
, c
8
y
8
7y
7
+ 19y
6
22y
5
+ 3y
4
+ 14y
3
6y
2
4y + 1
c
7
, c
11
y
8
c
9
, c
10
, c
12
(y 1)
8
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.180120 + 0.268597I
a = 0.615431 + 0.295452I
b = 0
0.604279 + 1.131230I 1.048604 + 0.799861I
u = 1.180120 0.268597I
a = 0.615431 0.295452I
b = 0
0.604279 1.131230I 1.048604 0.799861I
u = 0.108090 + 0.747508I
a = 1.68119 + 0.49658I
b = 0
3.80435 + 2.57849I 0.86993 2.07507I
u = 0.108090 0.747508I
a = 1.68119 0.49658I
b = 0
3.80435 2.57849I 0.86993 + 2.07507I
u = 1.37100
a = 0.532015
b = 0
4.85780 9.68010
u = 1.334530 + 0.318930I
a = 0.473764 0.240160I
b = 0
0.73474 6.44354I 3.69048 + 2.66284I
u = 1.334530 0.318930I
a = 0.473764 + 0.240160I
b = 0
0.73474 + 6.44354I 3.69048 2.66284I
u = 0.463640
a = 4.65198
b = 0
0.799899 25.5820
18
III.
I
v
1
= ha, 26v
5
33v
4
+· · · +413b 685, v
6
3v
5
+15v
4
24v
3
+11v
2
6v + 1i
(i) Arc colorings
a
4
=
v
0
a
8
=
1
0
a
9
=
1
0
a
5
=
v
0
a
12
=
0
0.0629540v
5
+ 0.0799031v
4
+ ··· 0.215496v + 1.65860
a
10
=
1
0.0629540v
5
0.0799031v
4
+ ··· + 0.215496v 2.65860
a
1
=
0.0629540v
5
+ 0.0799031v
4
+ ··· 0.215496v + 1.65860
0.0629540v
5
0.0799031v
4
+ ··· + 0.215496v 2.65860
a
11
=
0.0629540v
5
0.0799031v
4
+ ··· + 0.215496v 1.65860
0.0629540v
5
+ 0.0799031v
4
+ ··· 0.215496v + 1.65860
a
7
=
0.0629540v
5
0.0799031v
4
+ ··· + 0.215496v 1.65860
0.0629540v
5
+ 0.0799031v
4
+ ··· 0.215496v + 2.65860
a
3
=
0.217918v
5
+ 0.353511v
4
+ ··· + 4.56174v + 0.125908
0.326877v
5
0.530266v
4
+ ··· 5.84262v 0.188862
a
6
=
0.0871671v
5
+ 0.341404v
4
+ ··· 0.375303v 1.54964
0.0629540v
5
+ 0.0799031v
4
+ ··· 0.215496v + 2.65860
a
2
=
0.963680v
5
+ 2.60775v
4
+ ··· 3.76029v + 2.31235
1.26392v
5
3.45036v
4
+ ··· + 4.94189v 3.53027
(ii) Obstruction class = 1
(iii) Cusp Shapes =
1914
413
v
5
+
5225
413
v
4
27339
413
v
3
+
38886
413
v
2
10650
413
v +
9063
413
19
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
(u
3
u
2
+ 2u 1)
2
c
2
(u
3
+ u
2
1)
2
c
4
, c
8
u
6
c
5
(u
3
u
2
+ 1)
2
c
6
(u
3
+ u
2
+ 2u + 1)
2
c
7
, c
9
, c
10
(u
2
u 1)
3
c
11
, c
12
(u
2
+ u 1)
3
20
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
6
(y
3
+ 3y
2
+ 2y 1)
2
c
2
, c
5
(y
3
y
2
+ 2y 1)
2
c
4
, c
8
y
6
c
7
, c
9
, c
10
c
11
, c
12
(y
2
3y + 1)
3
21
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.49186
a = 0
b = 0.618034
0.126494 1.65540
v = 0.082153 + 0.499284I
a = 0
b = 1.61803
11.90680 2.82812I 1.56739 + 1.81005I
v = 0.082153 0.499284I
a = 0
b = 1.61803
11.90680 + 2.82812I 1.56739 1.81005I
v = 0.217660
a = 0
b = 1.61803
7.76919 20.1360
v = 0.56309 + 3.42214I
a = 0
b = 0.618034
4.01109 2.82812I 5.96298 + 6.80673I
v = 0.56309 3.42214I
a = 0
b = 0.618034
4.01109 + 2.82812I 5.96298 6.80673I
22
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
3
u
2
+ 2u 1)
2
· (u
8
3u
7
+ 7u
6
10u
5
+ 11u
4
10u
3
+ 6u
2
4u + 1)
· (u
98
+ 32u
97
+ ··· + 46u + 1)
c
2
(u
3
+ u
2
1)
2
(u
8
u
7
u
6
+ 2u
5
+ u
4
2u
3
+ 2u 1)
· (u
98
+ 4u
97
+ ··· + 14u + 1)
c
3
(u
3
u
2
+ 2u 1)
2
(u
8
+ u
7
3u
6
2u
5
+ 3u
4
+ 2u 1)
· (u
98
4u
97
+ ··· + 19016u + 4129)
c
4
u
6
(u
8
+ u
7
+ ··· + 2u 1)(u
98
+ 2u
97
+ ··· + 160u + 64)
c
5
(u
3
u
2
+ 1)
2
(u
8
+ u
7
u
6
2u
5
+ u
4
+ 2u
3
2u 1)
· (u
98
+ 4u
97
+ ··· + 14u + 1)
c
6
(u
3
+ u
2
+ 2u + 1)
2
· (u
8
+ 3u
7
+ 7u
6
+ 10u
5
+ 11u
4
+ 10u
3
+ 6u
2
+ 4u + 1)
· (u
98
+ 32u
97
+ ··· + 46u + 1)
c
7
u
8
(u
2
u 1)
3
(u
98
4u
97
+ ··· 128u + 256)
c
8
u
6
(u
8
u
7
+ ··· 2u 1)(u
98
+ 2u
97
+ ··· + 160u + 64)
c
9
, c
10
((u + 1)
8
)(u
2
u 1)
3
(u
98
+ 12u
97
+ ··· 31u + 1)
c
11
u
8
(u
2
+ u 1)
3
(u
98
4u
97
+ ··· 128u + 256)
c
12
((u 1)
8
)(u
2
+ u 1)
3
(u
98
+ 12u
97
+ ··· 31u + 1)
23
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
6
(y
3
+ 3y
2
+ 2y 1)
2
· (y
8
+ 5y
7
+ 11y
6
+ 6y
5
17y
4
34y
3
22y
2
4y + 1)
· (y
98
+ 72y
97
+ ··· 2334y + 1)
c
2
, c
5
(y
3
y
2
+ 2y 1)
2
· (y
8
3y
7
+ 7y
6
10y
5
+ 11y
4
10y
3
+ 6y
2
4y + 1)
· (y
98
32y
97
+ ··· 46y + 1)
c
3
(y
3
+ 3y
2
+ 2y 1)
2
· (y
8
7y
7
+ 19y
6
22y
5
+ 3y
4
+ 14y
3
6y
2
4y + 1)
· (y
98
+ 76y
96
+ ··· 284998790y + 17048641)
c
4
, c
8
y
6
(y
8
7y
7
+ 19y
6
22y
5
+ 3y
4
+ 14y
3
6y
2
4y + 1)
· (y
98
42y
97
+ ··· 87040y + 4096)
c
7
, c
11
y
8
(y
2
3y + 1)
3
(y
98
60y
97
+ ··· 3457024y + 65536)
c
9
, c
10
, c
12
((y 1)
8
)(y
2
3y + 1)
3
(y
98
96y
97
+ ··· 903y + 1)
24