12a
0212
(K12a
0212
)
A knot diagram
1
Linearized knot diagam
3 6 7 9 2 5 11 4 1 12 8 10
Solving Sequence
3,6
2 1 5 7
4,10
9 8 12 11
c
2
c
1
c
5
c
6
c
3
c
9
c
8
c
12
c
10
c
4
, c
7
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h13u
74
40u
73
+ ··· + 2b + 9, 15u
74
62u
73
+ ··· + 4a + 33, u
75
4u
74
+ ··· + 2u 1i
I
u
2
= hb, a
2
au + 2u
2
+ 3u + 2, u
3
+ u
2
1i
I
u
3
= hb, a + 1, u
6
u
5
+ 2u
2
2u + 1i
I
u
4
= hb, a + 1, u + 1i
I
u
5
= hb, a 1, u
3
+ u
2
1i
* 5 irreducible components of dim
C
= 0, with total 91 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h13u
74
40u
73
+· · ·+2b+9, 15u
74
62u
73
+· · ·+4a+33, u
75
4u
74
+· · ·+2u1i
(i) Arc colorings
a
3
=
1
0
a
6
=
0
u
a
2
=
1
u
2
a
1
=
u
2
+ 1
u
2
a
5
=
u
u
3
+ u
a
7
=
u
3
u
5
u
3
+ u
a
4
=
u
8
+ u
6
u
4
+ 1
u
10
2u
8
+ 3u
6
2u
4
+ u
2
a
10
=
3.75000u
74
+ 15.5000u
73
+ ··· + 10.2500u 8.25000
13
2
u
74
+ 20u
73
+ ··· +
17
2
u
9
2
a
9
=
8u
74
+
115
4
u
73
+ ··· +
57
4
u
41
4
17
2
u
74
+
97
4
u
73
+ ··· +
43
4
u
9
2
a
8
=
4u
74
67
4
u
73
+ ···
17
4
u +
17
4
9
2
u
74
65
4
u
73
+ ···
19
4
u +
9
2
a
12
=
1
4
u
72
+
3
4
u
71
+ ··· +
7
2
u +
1
4
u
19
3u
17
+ ··· 4u
2
+ u
a
11
=
9
4
u
73
23
4
u
72
+ ··· +
21
2
u
2
35
4
u
7
2
u
74
+
51
4
u
73
+ ··· +
9
4
u
7
2
(ii) Obstruction class = 1
(iii) Cusp Shapes =
31
4
u
74
3
2
u
73
+ ··· +
3
4
u
37
2
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
u
75
+ 26u
74
+ ··· 6u + 1
c
2
, c
5
u
75
+ 4u
74
+ ··· + 2u + 1
c
3
u
75
4u
74
+ ··· + 3428u + 673
c
4
, c
8
u
75
6u
74
+ ··· 2048u + 512
c
7
, c
11
u
75
4u
74
+ ··· + 2u + 1
c
9
, c
10
, c
12
u
75
18u
74
+ ··· + 42u 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
75
+ 50y
74
+ ··· + 338y 1
c
2
, c
5
y
75
26y
74
+ ··· 6y 1
c
3
y
75
34y
74
+ ··· + 20450382y 452929
c
4
, c
8
y
75
42y
74
+ ··· + 2228224y 262144
c
7
, c
11
y
75
18y
74
+ ··· + 42y 1
c
9
, c
10
, c
12
y
75
+ 82y
74
+ ··· + 898y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.701208 + 0.720685I
a = 0.271979 0.246067I
b = 0.579346 0.610917I
3.38308 0.01973I 0
u = 0.701208 0.720685I
a = 0.271979 + 0.246067I
b = 0.579346 + 0.610917I
3.38308 + 0.01973I 0
u = 0.627949 + 0.758720I
a = 0.575313 + 1.104250I
b = 0.241056 + 1.106360I
0.61116 + 1.98602I 0
u = 0.627949 0.758720I
a = 0.575313 1.104250I
b = 0.241056 1.106360I
0.61116 1.98602I 0
u = 0.797274 + 0.636830I
a = 1.023330 + 0.109881I
b = 0.383426 0.229792I
1.24153 4.89896I 0
u = 0.797274 0.636830I
a = 1.023330 0.109881I
b = 0.383426 + 0.229792I
1.24153 + 4.89896I 0
u = 0.663944 + 0.796185I
a = 0.228762 1.369140I
b = 0.75083 1.34544I
1.75797 + 5.85887I 0
u = 0.663944 0.796185I
a = 0.228762 + 1.369140I
b = 0.75083 + 1.34544I
1.75797 5.85887I 0
u = 0.809697 + 0.500286I
a = 1.101780 + 0.206259I
b = 0.331049 + 0.357019I
1.80504 + 0.21281I 0
u = 0.809697 0.500286I
a = 1.101780 0.206259I
b = 0.331049 0.357019I
1.80504 0.21281I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.746204 + 0.738382I
a = 1.06503 + 1.47927I
b = 1.32562 + 0.86777I
3.84873 0.66860I 0
u = 0.746204 0.738382I
a = 1.06503 1.47927I
b = 1.32562 0.86777I
3.84873 + 0.66860I 0
u = 0.628281 + 0.711921I
a = 1.12592 + 3.33671I
b = 1.41795 + 1.94907I
3.10213 3.84461I 0
u = 0.628281 0.711921I
a = 1.12592 3.33671I
b = 1.41795 1.94907I
3.10213 + 3.84461I 0
u = 0.627365 + 0.846180I
a = 0.14858 + 2.83753I
b = 0.46848 + 2.31286I
6.70348 + 3.72129I 0
u = 0.627365 0.846180I
a = 0.14858 2.83753I
b = 0.46848 2.31286I
6.70348 3.72129I 0
u = 1.051230 + 0.097083I
a = 0.311756 0.810124I
b = 0.066769 + 1.046900I
4.37588 + 5.64662I 0
u = 1.051230 0.097083I
a = 0.311756 + 0.810124I
b = 0.066769 1.046900I
4.37588 5.64662I 0
u = 0.812700 + 0.676974I
a = 0.188335 1.356770I
b = 0.615066 1.037800I
2.12142 + 2.26372I 0
u = 0.812700 0.676974I
a = 0.188335 + 1.356770I
b = 0.615066 + 1.037800I
2.12142 2.26372I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.060630 + 0.009927I
a = 0.004661 + 1.039530I
b = 0.20878 3.03992I
8.40746 3.15444I 0
u = 1.060630 0.009927I
a = 0.004661 1.039530I
b = 0.20878 + 3.03992I
8.40746 + 3.15444I 0
u = 0.638608 + 0.850784I
a = 0.21667 2.89559I
b = 0.71638 2.35011I
6.21701 + 10.10530I 0
u = 0.638608 0.850784I
a = 0.21667 + 2.89559I
b = 0.71638 + 2.35011I
6.21701 10.10530I 0
u = 0.932954 + 0.071441I
a = 0.193432 + 0.886433I
b = 0.625448 1.099660I
1.44111 1.48666I 6.77628 + 4.80712I
u = 0.932954 0.071441I
a = 0.193432 0.886433I
b = 0.625448 + 1.099660I
1.44111 + 1.48666I 6.77628 4.80712I
u = 1.071330 + 0.046708I
a = 0.314563 + 0.332337I
b = 0.600863 0.674517I
6.34634 + 1.36308I 0
u = 1.071330 0.046708I
a = 0.314563 0.332337I
b = 0.600863 + 0.674517I
6.34634 1.36308I 0
u = 0.619084 + 0.677506I
a = 0.66146 3.38346I
b = 1.12813 1.94943I
3.32990 + 2.33530I 2.00000 3.24885I
u = 0.619084 0.677506I
a = 0.66146 + 3.38346I
b = 1.12813 + 1.94943I
3.32990 2.33530I 2.00000 + 3.24885I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.911078 + 0.665908I
a = 1.46979 0.72717I
b = 0.265473 1.359370I
1.81337 + 2.92907I 0
u = 0.911078 0.665908I
a = 1.46979 + 0.72717I
b = 0.265473 + 1.359370I
1.81337 2.92907I 0
u = 1.126690 + 0.126000I
a = 0.492982 0.635491I
b = 0.24597 + 2.58837I
12.9589 + 9.4189I 0
u = 1.126690 0.126000I
a = 0.492982 + 0.635491I
b = 0.24597 2.58837I
12.9589 9.4189I 0
u = 1.129400 + 0.113156I
a = 0.413730 + 0.513608I
b = 0.57600 2.46752I
13.35070 + 2.93555I 0
u = 1.129400 0.113156I
a = 0.413730 0.513608I
b = 0.57600 + 2.46752I
13.35070 2.93555I 0
u = 0.831632 + 0.781731I
a = 0.405448 + 0.090942I
b = 0.717939 + 0.023903I
4.49518 + 3.61543I 0
u = 0.831632 0.781731I
a = 0.405448 0.090942I
b = 0.717939 0.023903I
4.49518 3.61543I 0
u = 1.054410 + 0.511172I
a = 2.54504 0.47126I
b = 1.17837 + 1.55125I
10.59020 + 2.33640I 0
u = 1.054410 0.511172I
a = 2.54504 + 0.47126I
b = 1.17837 1.55125I
10.59020 2.33640I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.996108 + 0.618806I
a = 0.657831 + 0.669598I
b = 0.536812 + 0.383150I
2.90368 4.76352I 0
u = 0.996108 0.618806I
a = 0.657831 0.669598I
b = 0.536812 0.383150I
2.90368 + 4.76352I 0
u = 1.056010 + 0.527223I
a = 2.46210 + 0.75720I
b = 1.41911 1.29282I
10.79530 4.15159I 0
u = 1.056010 0.527223I
a = 2.46210 0.75720I
b = 1.41911 + 1.29282I
10.79530 + 4.15159I 0
u = 0.959804 + 0.703274I
a = 2.06554 0.50300I
b = 1.26162 + 1.12681I
3.20109 + 6.17050I 0
u = 0.959804 0.703274I
a = 2.06554 + 0.50300I
b = 1.26162 1.12681I
3.20109 6.17050I 0
u = 0.915099 + 0.761150I
a = 0.276923 0.700562I
b = 0.598686 + 0.067274I
4.24134 + 2.19377I 0
u = 0.915099 0.761150I
a = 0.276923 + 0.700562I
b = 0.598686 0.067274I
4.24134 2.19377I 0
u = 0.292739 + 0.750663I
a = 1.32844 2.03101I
b = 0.57813 1.46945I
8.54207 0.47640I 5.31082 + 0.38811I
u = 0.292739 0.750663I
a = 1.32844 + 2.03101I
b = 0.57813 + 1.46945I
8.54207 + 0.47640I 5.31082 0.38811I
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.983291 + 0.679379I
a = 0.326271 + 0.217290I
b = 0.269460 0.782508I
2.52825 5.35908I 0
u = 0.983291 0.679379I
a = 0.326271 0.217290I
b = 0.269460 + 0.782508I
2.52825 + 5.35908I 0
u = 1.005430 + 0.652614I
a = 3.71899 0.62315I
b = 1.43602 2.72402I
4.45485 + 2.85370I 0
u = 1.005430 0.652614I
a = 3.71899 + 0.62315I
b = 1.43602 + 2.72402I
4.45485 2.85370I 0
u = 0.267962 + 0.749469I
a = 0.96458 + 2.24772I
b = 0.33863 + 1.65527I
8.25339 6.87058I 4.66942 + 5.31459I
u = 0.267962 0.749469I
a = 0.96458 2.24772I
b = 0.33863 1.65527I
8.25339 + 6.87058I 4.66942 5.31459I
u = 1.009510 + 0.664597I
a = 3.84862 + 0.23046I
b = 1.76093 + 2.58718I
4.22333 + 9.15433I 0
u = 1.009510 0.664597I
a = 3.84862 0.23046I
b = 1.76093 2.58718I
4.22333 9.15433I 0
u = 0.884174 + 0.827701I
a = 0.858746 0.332274I
b = 0.020477 0.186379I
1.61016 + 6.14153I 0
u = 0.884174 0.827701I
a = 0.858746 + 0.332274I
b = 0.020477 + 0.186379I
1.61016 6.14153I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.020350 + 0.680346I
a = 1.026190 + 0.714206I
b = 0.02211 + 1.47609I
1.77547 7.46274I 0
u = 1.020350 0.680346I
a = 1.026190 0.714206I
b = 0.02211 1.47609I
1.77547 + 7.46274I 0
u = 1.018070 + 0.704584I
a = 1.78244 0.14154I
b = 0.63403 1.61362I
0.68795 11.52010I 0
u = 1.018070 0.704584I
a = 1.78244 + 0.14154I
b = 0.63403 + 1.61362I
0.68795 + 11.52010I 0
u = 1.050580 + 0.711144I
a = 2.84228 + 1.32579I
b = 0.58040 + 2.70950I
7.99110 9.53376I 0
u = 1.050580 0.711144I
a = 2.84228 1.32579I
b = 0.58040 2.70950I
7.99110 + 9.53376I 0
u = 1.048440 + 0.717583I
a = 3.10399 1.06144I
b = 0.84917 2.69538I
7.4670 15.9552I 0
u = 1.048440 0.717583I
a = 3.10399 + 1.06144I
b = 0.84917 + 2.69538I
7.4670 + 15.9552I 0
u = 0.649139
a = 0.546045
b = 0.341478
0.884135 11.8620
u = 0.233494 + 0.573241I
a = 0.058819 + 0.473224I
b = 0.477292 + 0.578592I
0.29565 3.74527I 0.52170 + 7.33925I
11
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.233494 0.573241I
a = 0.058819 0.473224I
b = 0.477292 0.578592I
0.29565 + 3.74527I 0.52170 7.33925I
u = 0.475208 + 0.051931I
a = 0.18074 3.75063I
b = 0.015921 0.686883I
3.67022 + 2.91113I 3.44925 3.93604I
u = 0.475208 0.051931I
a = 0.18074 + 3.75063I
b = 0.015921 + 0.686883I
3.67022 2.91113I 3.44925 + 3.93604I
u = 0.028799 + 0.274080I
a = 0.18442 1.93169I
b = 0.520994 0.325782I
1.326270 + 0.342139I 6.30252 0.67770I
u = 0.028799 0.274080I
a = 0.18442 + 1.93169I
b = 0.520994 + 0.325782I
1.326270 0.342139I 6.30252 + 0.67770I
12
II. I
u
2
= hb, a
2
au + 2u
2
+ 3u + 2, u
3
+ u
2
1i
(i) Arc colorings
a
3
=
1
0
a
6
=
0
u
a
2
=
1
u
2
a
1
=
u
2
+ 1
u
2
a
5
=
u
u
2
+ u 1
a
7
=
u
2
1
u
2
a
4
=
u
u
2
+ u 1
a
10
=
a
0
a
9
=
au
u
2
a + au a
a
8
=
au
u
2
a + au a
a
12
=
u
2
a 2u
2
+ a 2u
u
2
a
11
=
u
2
a au u
2
+ a u
u
2
a au + a
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
2
a u
2
8u 7
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
12
(u
3
u
2
+ 2u 1)
2
c
2
, c
11
(u
3
+ u
2
1)
2
c
4
, c
8
u
6
c
5
, c
7
(u
3
u
2
+ 1)
2
c
6
, c
9
, c
10
(u
3
+ u
2
+ 2u + 1)
2
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
6
c
9
, c
10
, c
12
(y
3
+ 3y
2
+ 2y 1)
2
c
2
, c
5
, c
7
c
11
(y
3
y
2
+ 2y 1)
2
c
4
, c
8
y
6
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.877439 + 0.744862I
a = 0.947279 + 0.320410I
b = 0
5.65624I 0.41065 5.95889I
u = 0.877439 + 0.744862I
a = 0.069840 + 0.424452I
b = 0
4.13758 + 2.82812I 0.76541 4.65175I
u = 0.877439 0.744862I
a = 0.947279 0.320410I
b = 0
5.65624I 0.41065 + 5.95889I
u = 0.877439 0.744862I
a = 0.069840 0.424452I
b = 0
4.13758 2.82812I 0.76541 + 4.65175I
u = 0.754878
a = 0.37744 + 2.29387I
b = 0
4.13758 + 2.82812I 13.82394 1.30714I
u = 0.754878
a = 0.37744 2.29387I
b = 0
4.13758 2.82812I 13.82394 + 1.30714I
16
III. I
u
3
= hb, a + 1, u
6
u
5
+ 2u
2
2u + 1i
(i) Arc colorings
a
3
=
1
0
a
6
=
0
u
a
2
=
1
u
2
a
1
=
u
2
+ 1
u
2
a
5
=
u
u
3
+ u
a
7
=
u
3
u
5
u
3
+ u
a
4
=
u
4
u
2
+ u + 1
u
4
u
3
+ u
a
10
=
1
0
a
9
=
u
4
+ u
2
1
u
4
a
8
=
u
u
3
+ u
a
12
=
1
u
2
a
11
=
u
2
1
u
4
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
17
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
u
6
+ u
5
+ 4u
4
+ 2u
3
+ 4u
2
+ 1
c
2
, c
5
, c
7
c
11
u
6
+ u
5
+ 2u
2
+ 2u + 1
c
3
u
6
+ u
5
+ 4u
4
+ 2u
3
2u
2
+ 1
c
4
, c
8
(u + 1)
6
c
9
, c
10
, c
12
u
6
u
5
+ 4u
4
2u
3
+ 4u
2
+ 1
18
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
, c
9
c
10
, c
12
y
6
+ 7y
5
+ 20y
4
+ 30y
3
+ 24y
2
+ 8y + 1
c
2
, c
5
, c
7
c
11
y
6
y
5
+ 4y
4
2y
3
+ 4y
2
+ 1
c
3
y
6
+ 7y
5
+ 8y
4
18y
3
+ 12y
2
4y + 1
c
4
, c
8
(y 1)
6
19
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.929638 + 0.614235I
a = 1.00000
b = 0
1.64493 6.00000
u = 0.929638 0.614235I
a = 1.00000
b = 0
1.64493 6.00000
u = 0.895432 + 0.823751I
a = 1.00000
b = 0
1.64493 6.00000
u = 0.895432 0.823751I
a = 1.00000
b = 0
1.64493 6.00000
u = 0.465794 + 0.571960I
a = 1.00000
b = 0
1.64493 6.00000
u = 0.465794 0.571960I
a = 1.00000
b = 0
1.64493 6.00000
20
IV. I
u
4
= hb, a + 1, u + 1i
(i) Arc colorings
a
3
=
1
0
a
6
=
0
1
a
2
=
1
1
a
1
=
0
1
a
5
=
1
0
a
7
=
1
1
a
4
=
0
1
a
10
=
1
0
a
9
=
1
1
a
8
=
1
0
a
12
=
1
1
a
11
=
2
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
21
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
6
c
8
u + 1
c
2
, c
3
, c
5
c
7
, c
9
, c
10
c
11
, c
12
u 1
22
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
6
c
7
, c
8
, c
9
c
10
, c
11
, c
12
y 1
23
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000
b = 0
1.64493 6.00000
24
V. I
u
5
= hb, a 1, u
3
+ u
2
1i
(i) Arc colorings
a
3
=
1
0
a
6
=
0
u
a
2
=
1
u
2
a
1
=
u
2
+ 1
u
2
a
5
=
u
u
2
+ u 1
a
7
=
u
2
1
u
2
a
4
=
u
u
2
+ u 1
a
10
=
1
0
a
9
=
u
u
2
+ u 1
a
8
=
u
u
2
+ u 1
a
12
=
1
u
2
a
11
=
u
2
+ 1
u
2
u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
25
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
12
u
3
u
2
+ 2u 1
c
2
, c
11
u
3
+ u
2
1
c
4
, c
8
u
3
c
5
, c
7
u
3
u
2
+ 1
c
6
, c
9
, c
10
u
3
+ u
2
+ 2u + 1
26
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
6
c
9
, c
10
, c
12
y
3
+ 3y
2
+ 2y 1
c
2
, c
5
, c
7
c
11
y
3
y
2
+ 2y 1
c
4
, c
8
y
3
27
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.877439 + 0.744862I
a = 1.00000
b = 0
0 0
u = 0.877439 0.744862I
a = 1.00000
b = 0
0 0
u = 0.754878
a = 1.00000
b = 0
0 0
28
VI. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u + 1)(u
3
u
2
+ 2u 1)
3
(u
6
+ u
5
+ 4u
4
+ 2u
3
+ 4u
2
+ 1)
· (u
75
+ 26u
74
+ ··· 6u + 1)
c
2
(u 1)(u
3
+ u
2
1)
3
(u
6
+ u
5
+ ··· + 2u + 1)(u
75
+ 4u
74
+ ··· + 2u + 1)
c
3
(u 1)(u
3
u
2
+ 2u 1)
3
(u
6
+ u
5
+ 4u
4
+ 2u
3
2u
2
+ 1)
· (u
75
4u
74
+ ··· + 3428u + 673)
c
4
, c
8
u
9
(u + 1)
7
(u
75
6u
74
+ ··· 2048u + 512)
c
5
(u 1)(u
3
u
2
+ 1)
3
(u
6
+ u
5
+ ··· + 2u + 1)(u
75
+ 4u
74
+ ··· + 2u + 1)
c
6
(u + 1)(u
3
+ u
2
+ 2u + 1)
3
(u
6
+ u
5
+ 4u
4
+ 2u
3
+ 4u
2
+ 1)
· (u
75
+ 26u
74
+ ··· 6u + 1)
c
7
(u 1)(u
3
u
2
+ 1)
3
(u
6
+ u
5
+ ··· + 2u + 1)(u
75
4u
74
+ ··· + 2u + 1)
c
9
, c
10
(u 1)(u
3
+ u
2
+ 2u + 1)
3
(u
6
u
5
+ 4u
4
2u
3
+ 4u
2
+ 1)
· (u
75
18u
74
+ ··· + 42u 1)
c
11
(u 1)(u
3
+ u
2
1)
3
(u
6
+ u
5
+ ··· + 2u + 1)(u
75
4u
74
+ ··· + 2u + 1)
c
12
(u 1)(u
3
u
2
+ 2u 1)
3
(u
6
u
5
+ 4u
4
2u
3
+ 4u
2
+ 1)
· (u
75
18u
74
+ ··· + 42u 1)
29
VII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
6
(y 1)(y
3
+ 3y
2
+ 2y 1)
3
(y
6
+ 7y
5
+ ··· + 8y + 1)
· (y
75
+ 50y
74
+ ··· + 338y 1)
c
2
, c
5
(y 1)(y
3
y
2
+ 2y 1)
3
(y
6
y
5
+ 4y
4
2y
3
+ 4y
2
+ 1)
· (y
75
26y
74
+ ··· 6y 1)
c
3
(y 1)(y
3
+ 3y
2
+ 2y 1)
3
(y
6
+ 7y
5
+ ··· 4y + 1)
· (y
75
34y
74
+ ··· + 20450382y 452929)
c
4
, c
8
y
9
(y 1)
7
(y
75
42y
74
+ ··· + 2228224y 262144)
c
7
, c
11
(y 1)(y
3
y
2
+ 2y 1)
3
(y
6
y
5
+ 4y
4
2y
3
+ 4y
2
+ 1)
· (y
75
18y
74
+ ··· + 42y 1)
c
9
, c
10
, c
12
(y 1)(y
3
+ 3y
2
+ 2y 1)
3
(y
6
+ 7y
5
+ ··· + 8y + 1)
· (y
75
+ 82y
74
+ ··· + 898y 1)
30