12a
0215
(K12a
0215
)
A knot diagram
1
Linearized knot diagam
3 6 7 9 10 2 11 12 5 4 1 8
Solving Sequence
2,7
6 3
4,10
11 8 1 5 9 12
c
6
c
2
c
3
c
10
c
7
c
1
c
5
c
9
c
12
c
4
, c
8
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h−u
25
+ u
24
+ ··· + 2b + 1, u
25
u
24
+ ··· + 2a 1, u
27
u
26
+ ··· + 2u 1i
I
u
2
= h−8.39891 × 10
38
u
81
+ 2.15045 × 10
38
u
80
+ ··· + 2.93276 × 10
39
b 1.22548 × 10
40
,
2.50222 × 10
40
u
81
4.66705 × 10
40
u
80
+ ··· + 2.05293 × 10
40
a 7.74216 × 10
40
, u
82
2u
81
+ ··· 19u + 7i
I
u
3
= hb + a + u, a
2
2a 2u + 1, u
2
+ u + 1i
I
u
4
= hb + u 1, a + 1, u
2
u + 1i
I
u
5
= hb + a + 1, a
2
+ 2au + 2a u, u
2
+ u + 1i
I
u
6
= hb u, a + u 1, u
2
u + 1i
* 6 irreducible components of dim
C
= 0, with total 121 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−u
25
+u
24
+· · ·+2b+1, u
25
u
24
+· · ·+2a1, u
27
u
26
+· · ·+2u1i
(i) Arc colorings
a
2
=
0
u
a
7
=
1
0
a
6
=
1
u
2
a
3
=
u
u
3
+ u
a
4
=
u
3
u
3
+ u
a
10
=
1
2
u
25
+
1
2
u
24
+ ··· 2u +
1
2
1
2
u
25
1
2
u
24
+ ··· + 2u
1
2
a
11
=
1
2
u
23
+
1
2
u
22
+ ··· 2u +
1
2
u
3
+ u
a
8
=
1
2
u
26
+
1
2
u
25
+ ··· +
1
2
u + 1
u
6
+ 2u
4
+ u
2
a
1
=
u
3
u
5
+ u
3
+ u
a
5
=
1
2
u
26
3u
24
+ ··· 2u +
3
2
1
2
u
25
1
2
u
24
+ ··· + 2u
1
2
a
9
=
1
2
u
26
1
2
u
25
+ ···
1
2
u
3
1
u
8
2u
6
2u
4
a
12
=
1
2
u
23
+
1
2
u
22
+ ··· 2u +
1
2
u
7
u
5
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 5u
26
2u
25
+ 36u
24
11u
23
+ 127u
22
33u
21
+ 270u
20
62u
19
+
367u
18
85u
17
+ 313u
16
86u
15
+ 164u
14
67u
13
+ 84u
12
29u
11
+ 98u
10
8u
9
+
82u
8
9u
7
+ 17u
6
25u
5
9u
3
+ 9u
2
2u + 6
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
11
u
27
+ 15u
26
+ ··· 2u 1
c
2
, c
6
, c
8
c
12
u
27
u
26
+ ··· + 2u 1
c
3
, c
7
u
27
+ u
26
+ ··· 3u 2
c
4
, c
5
, c
9
u
27
+ 5u
26
+ ··· + 4u 4
c
10
u
27
15u
26
+ ··· + 212u + 32
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
11
y
27
y
26
+ ··· 2y 1
c
2
, c
6
, c
8
c
12
y
27
+ 15y
26
+ ··· 2y 1
c
3
, c
7
y
27
17y
26
+ ··· 35y 4
c
4
, c
5
, c
9
y
27
25y
26
+ ··· + 48y 16
c
10
y
27
5y
26
+ ··· + 206224y 1024
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.803618 + 0.349348I
a = 1.007060 + 0.949020I
b = 1.41653 + 1.34230I
5.22371 6.72306I 9.84931 + 3.39478I
u = 0.803618 0.349348I
a = 1.007060 0.949020I
b = 1.41653 1.34230I
5.22371 + 6.72306I 9.84931 3.39478I
u = 0.299281 + 0.820284I
a = 0.48606 1.73494I
b = 0.88880 + 1.18954I
4.11938 2.82450I 2.13183 + 1.79598I
u = 0.299281 0.820284I
a = 0.48606 + 1.73494I
b = 0.88880 1.18954I
4.11938 + 2.82450I 2.13183 1.79598I
u = 0.116549 + 0.860765I
a = 0.078400 1.016090I
b = 0.278709 + 0.364691I
1.97453 + 1.43518I 2.24818 4.96930I
u = 0.116549 0.860765I
a = 0.078400 + 1.016090I
b = 0.278709 0.364691I
1.97453 1.43518I 2.24818 + 4.96930I
u = 0.513874 + 1.069060I
a = 0.352532 + 0.981625I
b = 0.76543 1.34247I
4.01281 6.61800I 3.83990 + 7.93477I
u = 0.513874 1.069060I
a = 0.352532 0.981625I
b = 0.76543 + 1.34247I
4.01281 + 6.61800I 3.83990 7.93477I
u = 0.615180 + 0.518291I
a = 1.61732 + 1.21180I
b = 0.501601 0.764150I
7.40368 2.31507I 12.17043 + 2.39012I
u = 0.615180 0.518291I
a = 1.61732 1.21180I
b = 0.501601 + 0.764150I
7.40368 + 2.31507I 12.17043 2.39012I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.743850 + 0.296760I
a = 0.370434 + 0.541518I
b = 0.339092 + 1.113750I
0.14900 + 3.15153I 5.48053 3.24594I
u = 0.743850 0.296760I
a = 0.370434 0.541518I
b = 0.339092 1.113750I
0.14900 3.15153I 5.48053 + 3.24594I
u = 0.264221 + 1.179210I
a = 1.117430 + 0.645366I
b = 0.213710 1.207370I
4.23123 0.71359I 1.52661 0.31939I
u = 0.264221 1.179210I
a = 1.117430 0.645366I
b = 0.213710 + 1.207370I
4.23123 + 0.71359I 1.52661 + 0.31939I
u = 0.338826 + 1.179080I
a = 0.42150 + 1.47832I
b = 0.72240 1.41289I
8.48034 3.42330I 5.15562 + 3.33733I
u = 0.338826 1.179080I
a = 0.42150 1.47832I
b = 0.72240 + 1.41289I
8.48034 + 3.42330I 5.15562 3.33733I
u = 0.411435 + 1.173870I
a = 0.52311 + 1.66108I
b = 1.11519 1.11629I
5.27423 + 7.72991I 0.94876 7.44715I
u = 0.411435 1.173870I
a = 0.52311 1.66108I
b = 1.11519 + 1.11629I
5.27423 7.72991I 0.94876 + 7.44715I
u = 0.528079 + 1.138480I
a = 0.703762 0.059607I
b = 0.123706 + 0.371890I
3.65072 + 8.53958I 0.93638 5.62468I
u = 0.528079 1.138480I
a = 0.703762 + 0.059607I
b = 0.123706 0.371890I
3.65072 8.53958I 0.93638 + 5.62468I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.568964 + 1.151920I
a = 0.84587 1.38262I
b = 0.64504 + 1.69437I
5.12208 13.17930I 0.30650 + 10.03114I
u = 0.568964 1.151920I
a = 0.84587 + 1.38262I
b = 0.64504 1.69437I
5.12208 + 13.17930I 0.30650 10.03114I
u = 0.597410 + 1.146880I
a = 0.30821 2.43725I
b = 1.60210 + 2.43878I
0.5058 + 17.2462I 3.99567 10.69153I
u = 0.597410 1.146880I
a = 0.30821 + 2.43725I
b = 1.60210 2.43878I
0.5058 17.2462I 3.99567 + 10.69153I
u = 0.541018 + 0.346561I
a = 0.594979 + 0.357100I
b = 0.282228 + 0.197681I
1.153800 + 0.433800I 8.89068 3.10738I
u = 0.541018 0.346561I
a = 0.594979 0.357100I
b = 0.282228 0.197681I
1.153800 0.433800I 8.89068 + 3.10738I
u = 0.635291
a = 0.194238
b = 0.955765
1.41139 7.78190
7
II. I
u
2
= h−8.40 × 10
38
u
81
+ 2.15 × 10
38
u
80
+ · · · + 2.93 × 10
39
b 1.23 ×
10
40
, 2.50 × 10
40
u
81
4.67 × 10
40
u
80
+ · · · + 2.05 × 10
40
a 7.74 ×
10
40
, u
82
2u
81
+ · · · 19u + 7i
(i) Arc colorings
a
2
=
0
u
a
7
=
1
0
a
6
=
1
u
2
a
3
=
u
u
3
+ u
a
4
=
u
3
u
3
+ u
a
10
=
1.21886u
81
+ 2.27336u
80
+ ··· 12.9728u + 3.77127
0.286383u
81
0.0733251u
80
+ ··· 4.86257u + 4.17860
a
11
=
0.411067u
81
0.288547u
80
+ ··· + 4.78352u 3.00988
0.614218u
81
+ 1.70547u
80
+ ··· 15.3414u + 6.51871
a
8
=
0.318231u
81
2.32467u
80
+ ··· + 24.6828u 12.1894
1.92973u
81
+ 3.70643u
80
+ ··· 27.3383u + 10.1543
a
1
=
u
3
u
5
+ u
3
+ u
a
5
=
0.371191u
81
+ 0.108615u
80
+ ··· + 1.54552u + 0.653397
0.134364u
81
+ 0.768131u
80
+ ··· 5.41326u + 3.53888
a
9
=
0.932035u
81
1.61400u
80
+ ··· + 1.95754u + 0.0479519
0.335091u
81
+ 0.133733u
80
+ ··· + 9.76711u 6.52731
a
12
=
0.854155u
81
+ 0.424449u
80
+ ··· + 5.52400u 3.77735
0.0430260u
81
+ 1.07121u
80
+ ··· 14.4429u + 9.10127
(ii) Obstruction class = 1
(iii) Cusp Shapes = 1.08647u
81
+ 2.72577u
80
+ ··· 37.5801u + 26.3020
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
11
u
82
+ 38u
81
+ ··· + 171u + 49
c
2
, c
6
, c
8
c
12
u
82
2u
81
+ ··· 19u + 7
c
3
, c
7
u
82
+ 2u
81
+ ··· + 653965u + 115507
c
4
, c
5
, c
9
(u
41
2u
40
+ ··· + 4u + 2)
2
c
10
(u
41
+ 6u
40
+ ··· 144u 32)
2
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
11
y
82
+ 14y
81
+ ··· + 65427y + 2401
c
2
, c
6
, c
8
c
12
y
82
+ 38y
81
+ ··· + 171y + 49
c
3
, c
7
y
82
10y
81
+ ··· 231414356651y + 13341867049
c
4
, c
5
, c
9
(y
41
38y
40
+ ··· 32y 4)
2
c
10
(y
41
+ 2y
40
+ ··· 3456y 1024)
2
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.689028 + 0.715237I
a = 0.426260 0.243286I
b = 0.022676 0.162534I
0.36156 + 5.69573I 0
u = 0.689028 0.715237I
a = 0.426260 + 0.243286I
b = 0.022676 + 0.162534I
0.36156 5.69573I 0
u = 0.765330 + 0.659348I
a = 1.34566 0.92456I
b = 0.239119 + 0.976808I
4.65659 8.77727I 0
u = 0.765330 0.659348I
a = 1.34566 + 0.92456I
b = 0.239119 0.976808I
4.65659 + 8.77727I 0
u = 0.695472 + 0.747401I
a = 1.19111 0.96963I
b = 0.366764 + 1.155420I
2.83527 1.77985I 0
u = 0.695472 0.747401I
a = 1.19111 + 0.96963I
b = 0.366764 1.155420I
2.83527 + 1.77985I 0
u = 0.719446 + 0.634218I
a = 1.37551 + 0.99667I
b = 0.323967 0.941289I
6.76688 4.02505I 11.00664 + 3.97880I
u = 0.719446 0.634218I
a = 1.37551 0.99667I
b = 0.323967 + 0.941289I
6.76688 + 4.02505I 11.00664 3.97880I
u = 0.283270 + 1.031430I
a = 2.04178 0.89333I
b = 0.20075 + 1.91629I
2.83527 1.77985I 0
u = 0.283270 1.031430I
a = 2.04178 + 0.89333I
b = 0.20075 1.91629I
2.83527 + 1.77985I 0
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.341629 + 1.027430I
a = 2.44843 + 0.21696I
b = 0.90934 1.82491I
2.46019 + 3.45470I 0
u = 0.341629 1.027430I
a = 2.44843 0.21696I
b = 0.90934 + 1.82491I
2.46019 3.45470I 0
u = 0.839192 + 0.351360I
a = 1.044020 0.844502I
b = 1.31623 1.40977I
2.88789 11.91530I 6.77003 + 7.12233I
u = 0.839192 0.351360I
a = 1.044020 + 0.844502I
b = 1.31623 + 1.40977I
2.88789 + 11.91530I 6.77003 7.12233I
u = 0.644899 + 0.881737I
a = 0.401320 0.122971I
b = 0.0900442 0.0322691I
0.847371 0.579153I 0
u = 0.644899 0.881737I
a = 0.401320 + 0.122971I
b = 0.0900442 + 0.0322691I
0.847371 + 0.579153I 0
u = 0.396078 + 1.023630I
a = 0.282828 + 1.206450I
b = 0.79733 1.30420I
3.09696 0
u = 0.396078 1.023630I
a = 0.282828 1.206450I
b = 0.79733 + 1.30420I
3.09696 0
u = 0.672412 + 0.878423I
a = 0.862261 + 0.794570I
b = 0.57402 1.37006I
2.46019 3.45470I 0
u = 0.672412 0.878423I
a = 0.862261 0.794570I
b = 0.57402 + 1.37006I
2.46019 + 3.45470I 0
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.564931 + 0.954516I
a = 0.417859 0.016464I
b = 0.0477010 0.0604940I
0.44383 + 3.16653I 0
u = 0.564931 0.954516I
a = 0.417859 + 0.016464I
b = 0.0477010 + 0.0604940I
0.44383 3.16653I 0
u = 0.452391 + 1.015630I
a = 0.71504 1.98517I
b = 1.13769 + 1.76536I
0.847371 0.579153I 0
u = 0.452391 1.015630I
a = 0.71504 + 1.98517I
b = 1.13769 1.76536I
0.847371 + 0.579153I 0
u = 0.605854 + 0.628370I
a = 0.424775 + 0.321065I
b = 0.075036 + 0.153636I
1.40425 + 1.45669I 6.96953 5.06575I
u = 0.605854 0.628370I
a = 0.424775 0.321065I
b = 0.075036 0.153636I
1.40425 1.45669I 6.96953 + 5.06575I
u = 0.808418 + 0.297201I
a = 0.342419 0.461894I
b = 0.319219 1.185340I
2.58795 + 8.05246I 2.39091 6.67607I
u = 0.808418 0.297201I
a = 0.342419 + 0.461894I
b = 0.319219 + 1.185340I
2.58795 8.05246I 2.39091 + 6.67607I
u = 0.544403 + 1.015420I
a = 0.463853 0.980844I
b = 0.73592 + 1.33469I
5.94556 2.27206I 0
u = 0.544403 1.015420I
a = 0.463853 + 0.980844I
b = 0.73592 1.33469I
5.94556 + 2.27206I 0
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.633782 + 0.965157I
a = 0.619693 0.846918I
b = 0.67438 + 1.36329I
5.78705 1.14285I 0
u = 0.633782 0.965157I
a = 0.619693 + 0.846918I
b = 0.67438 1.36329I
5.78705 + 1.14285I 0
u = 0.797763 + 0.273658I
a = 0.790370 0.865730I
b = 1.28854 1.12842I
0.33937 3.94176I 3.80485 + 2.05545I
u = 0.797763 0.273658I
a = 0.790370 + 0.865730I
b = 1.28854 + 1.12842I
0.33937 + 3.94176I 3.80485 2.05545I
u = 0.502229 + 1.050420I
a = 0.89797 + 1.74531I
b = 0.87575 1.84134I
0.36156 5.69573I 0
u = 0.502229 1.050420I
a = 0.89797 1.74531I
b = 0.87575 + 1.84134I
0.36156 + 5.69573I 0
u = 0.279574 + 1.135010I
a = 0.30915 1.50867I
b = 0.74203 + 1.28219I
4.43409 + 0.19849I 0
u = 0.279574 1.135010I
a = 0.30915 + 1.50867I
b = 0.74203 1.28219I
4.43409 0.19849I 0
u = 0.201185 + 1.156190I
a = 1.10226 0.88862I
b = 0.338911 + 1.367520I
0.33937 3.94176I 0
u = 0.201185 1.156190I
a = 1.10226 + 0.88862I
b = 0.338911 1.367520I
0.33937 + 3.94176I 0
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.680761 + 0.963853I
a = 0.637175 + 0.746660I
b = 0.66131 1.39711I
3.75302 + 3.33055I 0
u = 0.680761 0.963853I
a = 0.637175 0.746660I
b = 0.66131 + 1.39711I
3.75302 3.33055I 0
u = 0.383840 + 1.124570I
a = 0.75917 1.43709I
b = 1.058920 + 0.664259I
1.78976 + 3.63396I 0
u = 0.383840 1.124570I
a = 0.75917 + 1.43709I
b = 1.058920 0.664259I
1.78976 3.63396I 0
u = 0.525005 + 1.078820I
a = 0.57133 3.05080I
b = 2.61883 + 1.84930I
3.75302 + 3.33055I 0
u = 0.525005 1.078820I
a = 0.57133 + 3.05080I
b = 2.61883 1.84930I
3.75302 3.33055I 0
u = 0.324132 + 1.156920I
a = 0.470124 + 1.324050I
b = 0.643195 0.862446I
5.04218 0.52120I 0
u = 0.324132 1.156920I
a = 0.470124 1.324050I
b = 0.643195 + 0.862446I
5.04218 + 0.52120I 0
u = 0.502544 + 1.098810I
a = 0.713487 0.031522I
b = 0.016767 0.335638I
1.04581 + 3.83403I 0
u = 0.502544 1.098810I
a = 0.713487 + 0.031522I
b = 0.016767 + 0.335638I
1.04581 3.83403I 0
15
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.184539 + 1.194310I
a = 0.968047 + 0.860870I
b = 0.414774 1.294930I
2.25867 8.98287I 0
u = 0.184539 1.194310I
a = 0.968047 0.860870I
b = 0.414774 + 1.294930I
2.25867 + 8.98287I 0
u = 0.246275 + 1.183340I
a = 0.30446 + 1.42791I
b = 0.63553 1.29001I
7.30150 + 4.90350I 0
u = 0.246275 1.183340I
a = 0.30446 1.42791I
b = 0.63553 + 1.29001I
7.30150 4.90350I 0
u = 0.759560 + 0.170105I
a = 0.206959 0.563917I
b = 0.190983 1.102140I
4.43409 + 0.19849I 0.855132 0.263674I
u = 0.759560 0.170105I
a = 0.206959 + 0.563917I
b = 0.190983 + 1.102140I
4.43409 0.19849I 0.855132 + 0.263674I
u = 0.548764 + 1.094240I
a = 0.18219 + 2.93809I
b = 2.31640 2.17267I
4.65659 + 8.77727I 0
u = 0.548764 1.094240I
a = 0.18219 2.93809I
b = 2.31640 + 2.17267I
4.65659 8.77727I 0
u = 0.679190 + 0.367886I
a = 0.86819 + 1.43693I
b = 1.82727 + 1.10121I
6.76688 4.02505I 11.00664 + 3.97880I
u = 0.679190 0.367886I
a = 0.86819 1.43693I
b = 1.82727 1.10121I
6.76688 + 4.02505I 11.00664 3.97880I
16
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.447381 + 1.149980I
a = 0.883459 0.065760I
b = 0.005837 + 0.564784I
5.04218 + 0.52120I 0
u = 0.447381 1.149980I
a = 0.883459 + 0.065760I
b = 0.005837 0.564784I
5.04218 0.52120I 0
u = 0.440145 + 0.608096I
a = 0.95391 1.06892I
b = 1.052950 0.702852I
0.44383 3.16653I 4.71993 0.58973I
u = 0.440145 0.608096I
a = 0.95391 + 1.06892I
b = 1.052950 + 0.702852I
0.44383 + 3.16653I 4.71993 + 0.58973I
u = 0.712533 + 0.226602I
a = 0.563149 0.287019I
b = 0.383162 0.371369I
1.04581 3.83403I 4.44538 + 2.12907I
u = 0.712533 0.226602I
a = 0.563149 + 0.287019I
b = 0.383162 + 0.371369I
1.04581 + 3.83403I 4.44538 2.12907I
u = 0.551632 + 1.132560I
a = 0.85256 + 1.44076I
b = 0.67530 1.71516I
2.58795 8.05246I 0
u = 0.551632 1.132560I
a = 0.85256 1.44076I
b = 0.67530 + 1.71516I
2.58795 + 8.05246I 0
u = 0.735105 + 0.006056I
a = 0.436191 0.362330I
b = 0.791059 0.477947I
1.78976 + 3.63396I 3.00355 4.41372I
u = 0.735105 0.006056I
a = 0.436191 + 0.362330I
b = 0.791059 + 0.477947I
1.78976 3.63396I 3.00355 + 4.41372I
17
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.512115 + 1.158870I
a = 0.74554 1.45277I
b = 0.70751 + 1.65463I
7.30150 4.90350I 0
u = 0.512115 1.158870I
a = 0.74554 + 1.45277I
b = 0.70751 1.65463I
7.30150 + 4.90350I 0
u = 0.585200 + 1.135380I
a = 0.22170 + 2.53693I
b = 1.73675 2.39250I
2.88789 + 11.91530I 0
u = 0.585200 1.135380I
a = 0.22170 2.53693I
b = 1.73675 + 2.39250I
2.88789 11.91530I 0
u = 0.556886 + 1.153190I
a = 0.00759 2.38243I
b = 1.66909 + 2.10879I
2.25867 + 8.98287I 0
u = 0.556886 1.153190I
a = 0.00759 + 2.38243I
b = 1.66909 2.10879I
2.25867 8.98287I 0
u = 0.592687 + 0.369522I
a = 0.61966 1.82844I
b = 2.04999 0.82047I
5.78705 + 1.14285I 9.35767 1.34968I
u = 0.592687 0.369522I
a = 0.61966 + 1.82844I
b = 2.04999 + 0.82047I
5.78705 1.14285I 9.35767 + 1.34968I
u = 0.532881 + 0.446002I
a = 0.675343 + 0.806391I
b = 0.633559 + 0.875574I
1.40425 + 1.45669I 6.96953 5.06575I
u = 0.532881 0.446002I
a = 0.675343 0.806391I
b = 0.633559 0.875574I
1.40425 1.45669I 6.96953 + 5.06575I
18
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.552652 + 0.404350I
a = 1.98289 1.32692I
b = 0.605079 + 0.596657I
5.94556 + 2.27206I 8.68115 3.66498I
u = 0.552652 0.404350I
a = 1.98289 + 1.32692I
b = 0.605079 0.596657I
5.94556 2.27206I 8.68115 + 3.66498I
19
III. I
u
3
= hb + a + u, a
2
2a 2u + 1, u
2
+ u + 1i
(i) Arc colorings
a
2
=
0
u
a
7
=
1
0
a
6
=
1
u 1
a
3
=
u
u + 1
a
4
=
1
u + 1
a
10
=
a
a u
a
11
=
au + a u
u 1
a
8
=
au
u
a
1
=
1
0
a
5
=
au 3u 1
a + u
a
9
=
au a + u
u + 1
a
12
=
au + a + 1
u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8u + 12
20
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
8
c
11
(u
2
u + 1)
2
c
3
, c
6
, c
7
c
12
(u
2
+ u + 1)
2
c
4
, c
5
, c
9
c
10
(u
2
2)
2
21
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
6
, c
7
, c
8
c
11
, c
12
(y
2
+ y + 1)
2
c
4
, c
5
, c
9
c
10
(y 2)
4
22
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 0.292893 1.224750I
b = 0.207107 + 0.358719I
4.93480 4.05977I 8.00000 + 6.92820I
u = 0.500000 + 0.866025I
a = 1.70711 + 1.22474I
b = 1.20711 2.09077I
4.93480 4.05977I 8.00000 + 6.92820I
u = 0.500000 0.866025I
a = 0.292893 + 1.224750I
b = 0.207107 0.358719I
4.93480 + 4.05977I 8.00000 6.92820I
u = 0.500000 0.866025I
a = 1.70711 1.22474I
b = 1.20711 + 2.09077I
4.93480 + 4.05977I 8.00000 6.92820I
23
IV. I
u
4
= hb + u 1, a + 1, u
2
u + 1i
(i) Arc colorings
a
2
=
0
u
a
7
=
1
0
a
6
=
1
u 1
a
3
=
u
u 1
a
4
=
1
u 1
a
10
=
1
u + 1
a
11
=
1
u + 1
a
8
=
u
u
a
1
=
1
0
a
5
=
1
u 1
a
9
=
1
u + 1
a
12
=
u 2
u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8u + 4
24
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
6
c
7
, c
11
, c
12
u
2
u + 1
c
2
, c
8
u
2
+ u + 1
c
4
, c
5
, c
9
c
10
u
2
25
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
6
, c
7
, c
8
c
11
, c
12
y
2
+ y + 1
c
4
, c
5
, c
9
c
10
y
2
26
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 1.00000
b = 0.500000 0.866025I
4.05977I 0. 6.92820I
u = 0.500000 0.866025I
a = 1.00000
b = 0.500000 + 0.866025I
4.05977I 0. + 6.92820I
27
V. I
u
5
= hb + a + 1, a
2
+ 2au + 2a u, u
2
+ u + 1i
(i) Arc colorings
a
2
=
0
u
a
7
=
1
0
a
6
=
1
u 1
a
3
=
u
u + 1
a
4
=
1
u + 1
a
10
=
a
a 1
a
11
=
au + a 1
u
a
8
=
a u + 1
u 1
a
1
=
1
0
a
5
=
a u
au a + 1
a
9
=
au a + 1
u
a
12
=
au + a u 1
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8
28
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
8
c
11
(u
2
u + 1)
2
c
3
, c
6
, c
7
c
12
(u
2
+ u + 1)
2
c
4
, c
5
, c
9
c
10
(u
2
2)
2
29
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
6
, c
7
, c
8
c
11
, c
12
(y
2
+ y + 1)
2
c
4
, c
5
, c
9
c
10
(y 2)
4
30
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 0.207107 + 0.358719I
b = 1.207110 0.358719I
4.93480 8.00000
u = 0.500000 + 0.866025I
a = 1.20711 2.09077I
b = 0.20711 + 2.09077I
4.93480 8.00000
u = 0.500000 0.866025I
a = 0.207107 0.358719I
b = 1.207110 + 0.358719I
4.93480 8.00000
u = 0.500000 0.866025I
a = 1.20711 + 2.09077I
b = 0.20711 2.09077I
4.93480 8.00000
31
VI. I
u
6
= hb u, a + u 1, u
2
u + 1i
(i) Arc colorings
a
2
=
0
u
a
7
=
1
0
a
6
=
1
u 1
a
3
=
u
u 1
a
4
=
1
u 1
a
10
=
u + 1
u
a
11
=
u + 1
u
a
8
=
2
u 1
a
1
=
1
0
a
5
=
1
u 1
a
9
=
u + 1
u
a
12
=
2u + 1
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
32
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
6
c
7
, c
11
, c
12
u
2
u + 1
c
2
, c
8
u
2
+ u + 1
c
4
, c
5
, c
9
c
10
u
2
33
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
6
, c
7
, c
8
c
11
, c
12
y
2
+ y + 1
c
4
, c
5
, c
9
c
10
y
2
34
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
6
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 0.500000 0.866025I
b = 0.500000 + 0.866025I
0 6.00000
u = 0.500000 0.866025I
a = 0.500000 + 0.866025I
b = 0.500000 0.866025I
0 6.00000
35
VII. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
11
((u
2
u + 1)
6
)(u
27
+ 15u
26
+ ··· 2u 1)
· (u
82
+ 38u
81
+ ··· + 171u + 49)
c
2
, c
8
((u
2
u + 1)
4
)(u
2
+ u + 1)
2
(u
27
u
26
+ ··· + 2u 1)
· (u
82
2u
81
+ ··· 19u + 7)
c
3
, c
7
((u
2
u + 1)
2
)(u
2
+ u + 1)
4
(u
27
+ u
26
+ ··· 3u 2)
· (u
82
+ 2u
81
+ ··· + 653965u + 115507)
c
4
, c
5
, c
9
u
4
(u
2
2)
4
(u
27
+ 5u
26
+ ··· + 4u 4)(u
41
2u
40
+ ··· + 4u + 2)
2
c
6
, c
12
((u
2
u + 1)
2
)(u
2
+ u + 1)
4
(u
27
u
26
+ ··· + 2u 1)
· (u
82
2u
81
+ ··· 19u + 7)
c
10
u
4
(u
2
2)
4
(u
27
15u
26
+ ··· + 212u + 32)
· (u
41
+ 6u
40
+ ··· 144u 32)
2
36
VIII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
11
((y
2
+ y + 1)
6
)(y
27
y
26
+ ··· 2y 1)
· (y
82
+ 14y
81
+ ··· + 65427y + 2401)
c
2
, c
6
, c
8
c
12
((y
2
+ y + 1)
6
)(y
27
+ 15y
26
+ ··· 2y 1)
· (y
82
+ 38y
81
+ ··· + 171y + 49)
c
3
, c
7
((y
2
+ y + 1)
6
)(y
27
17y
26
+ ··· 35y 4)
· (y
82
10y
81
+ ··· 231414356651y + 13341867049)
c
4
, c
5
, c
9
y
4
(y 2)
8
(y
27
25y
26
+ ··· + 48y 16)
· (y
41
38y
40
+ ··· 32y 4)
2
c
10
y
4
(y 2)
8
(y
27
5y
26
+ ··· + 206224y 1024)
· (y
41
+ 2y
40
+ ··· 3456y 1024)
2
37