12a
0216
(K12a
0216
)
A knot diagram
1
Linearized knot diagam
3 6 7 9 10 2 12 4 5 1 8 11
Solving Sequence
4,8
9 5 10
6,12
7 3 2 11 1
c
8
c
4
c
9
c
5
c
7
c
3
c
2
c
11
c
12
c
1
, c
6
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h3.31230 × 10
33
u
63
9.21845 × 10
33
u
62
+ ··· + 2.52277 × 10
34
b 5.95857 × 10
34
,
1.05553 × 10
34
u
63
2.85080 × 10
34
u
62
+ ··· + 2.52277 × 10
34
a 9.65444 × 10
33
, u
64
4u
63
+ ··· + 32u + 16i
I
u
2
= h2b + 2a u + 2, 2a
2
2au + 2a u + 3, u
2
2i
I
u
3
= ha
4
u 2a
4
+ 4a
3
u 8a
3
+ 4a
2
u 8a
2
7au + 25b 11a 14u 2,
a
5
+ 2a
4
u + 2a
4
+ 3a
3
u + 6a
3
+ 8a
2
u + 10a
2
+ 7au + 13a u 1, u
2
+ u 1i
I
u
4
= hau + b + 2a + u + 2, 2a
2
+ au + 2a u + 3, u
2
2i
I
v
1
= ha, b v 1, v
2
+ v + 1i
I
v
2
= ha, b
2
b + 1, v 1i
* 6 irreducible components of dim
C
= 0, with total 86 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h3.31×10
33
u
63
9.22×10
33
u
62
+· · ·+2.52×10
34
b5.96×10
34
, 1.06×10
34
u
63
2.85 × 10
34
u
62
+ · · · + 2.52 × 10
34
a 9.65 × 10
33
, u
64
4u
63
+ · · · + 32u + 16i
(i) Arc colorings
a
4
=
0
u
a
8
=
1
0
a
9
=
1
u
2
a
5
=
u
u
3
+ u
a
10
=
u
2
+ 1
u
4
+ 2u
2
a
6
=
u
3
2u
u
5
3u
3
+ u
a
12
=
0.418403u
63
+ 1.13003u
62
+ ··· + 7.82001u + 0.382692
0.131296u
63
+ 0.365410u
62
+ ··· + 4.28462u + 2.36192
a
7
=
0.342599u
63
+ 0.737839u
62
+ ··· + 11.5782u + 4.46198
0.263432u
63
+ 0.630688u
62
+ ··· + 6.03905u + 1.99604
a
3
=
0.790350u
63
2.05902u
62
+ ··· 18.5463u 5.88736
0.362768u
63
0.965419u
62
+ ··· 6.85471u 2.61286
a
2
=
0.203141u
63
0.562340u
62
+ ··· 3.81650u 1.43156
0.409877u
63
1.08413u
62
+ ··· 8.12806u 2.97524
a
11
=
0.549700u
63
+ 1.49544u
62
+ ··· + 12.1046u + 2.74461
0.131296u
63
+ 0.365410u
62
+ ··· + 4.28462u + 2.36192
a
1
=
0.768798u
63
1.82001u
62
+ ··· 19.8193u 8.43548
0.735613u
63
1.86045u
62
+ ··· 15.0301u 5.18940
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2.52449u
63
5.73943u
62
+ ··· 69.7334u 34.4634
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
64
+ 35u
63
+ ··· + 416u + 49
c
2
, c
6
u
64
3u
63
+ ··· 16u + 7
c
3
u
64
+ 3u
63
+ ··· 4558u + 763
c
4
, c
5
, c
8
c
9
u
64
+ 4u
63
+ ··· 32u + 16
c
7
, c
11
u
64
+ 3u
63
+ ··· 6u + 7
c
10
, c
12
u
64
19u
63
+ ··· 608u + 49
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
64
5y
63
+ ··· 30760y + 2401
c
2
, c
6
y
64
+ 35y
63
+ ··· + 416y + 49
c
3
y
64
45y
63
+ ··· + 15204664y + 582169
c
4
, c
5
, c
8
c
9
y
64
76y
63
+ ··· 1024y + 256
c
7
, c
11
y
64
+ 19y
63
+ ··· + 608y + 49
c
10
, c
12
y
64
+ 59y
63
+ ··· + 133272y + 2401
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.873442 + 0.450062I
a = 0.316313 + 0.070275I
b = 0.799432 + 0.773699I
4.38307 0.99571I 0
u = 0.873442 0.450062I
a = 0.316313 0.070275I
b = 0.799432 0.773699I
4.38307 + 0.99571I 0
u = 0.819111 + 0.526710I
a = 1.11929 1.64147I
b = 0.751905 + 0.969822I
3.78557 + 6.83757I 0
u = 0.819111 0.526710I
a = 1.11929 + 1.64147I
b = 0.751905 0.969822I
3.78557 6.83757I 0
u = 0.824871 + 0.622233I
a = 0.92431 + 1.81972I
b = 0.773002 1.004690I
6.66344 11.86030I 0
u = 0.824871 0.622233I
a = 0.92431 1.81972I
b = 0.773002 + 1.004690I
6.66344 + 11.86030I 0
u = 0.879555 + 0.575858I
a = 0.533241 + 0.042734I
b = 0.858792 0.753406I
7.43975 + 5.78092I 0
u = 0.879555 0.575858I
a = 0.533241 0.042734I
b = 0.858792 + 0.753406I
7.43975 5.78092I 0
u = 0.974065 + 0.497285I
a = 0.83168 + 1.35722I
b = 0.798463 0.924252I
8.15312 3.18144I 0
u = 0.974065 0.497285I
a = 0.83168 1.35722I
b = 0.798463 + 0.924252I
8.15312 + 3.18144I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.857795 + 0.198791I
a = 0.310940 + 0.261733I
b = 0.651190 0.065793I
3.65580 + 3.51727I 12.68996 5.01598I
u = 0.857795 0.198791I
a = 0.310940 0.261733I
b = 0.651190 + 0.065793I
3.65580 3.51727I 12.68996 + 5.01598I
u = 1.057340 + 0.437339I
a = 0.206911 + 0.270794I
b = 0.815263 0.853921I
8.36696 2.85624I 0
u = 1.057340 0.437339I
a = 0.206911 0.270794I
b = 0.815263 + 0.853921I
8.36696 + 2.85624I 0
u = 0.142496 + 0.804798I
a = 0.47916 + 1.62652I
b = 0.772417 0.938985I
4.61047 + 7.11222I 7.85412 5.57393I
u = 0.142496 0.804798I
a = 0.47916 1.62652I
b = 0.772417 + 0.938985I
4.61047 7.11222I 7.85412 + 5.57393I
u = 0.060512 + 0.798911I
a = 0.45707 + 1.46569I
b = 0.803492 0.827725I
4.95457 1.19128I 8.68532 + 0.53231I
u = 0.060512 0.798911I
a = 0.45707 1.46569I
b = 0.803492 + 0.827725I
4.95457 + 1.19128I 8.68532 0.53231I
u = 0.679164 + 0.384679I
a = 0.56201 2.37763I
b = 0.240421 + 1.058780I
0.09688 6.48785I 5.34636 + 9.14112I
u = 0.679164 0.384679I
a = 0.56201 + 2.37763I
b = 0.240421 1.058780I
0.09688 + 6.48785I 5.34636 9.14112I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.063045 + 0.685748I
a = 0.37731 1.58111I
b = 0.723329 + 0.880008I
1.54119 2.76193I 3.74007 + 2.60897I
u = 0.063045 0.685748I
a = 0.37731 + 1.58111I
b = 0.723329 0.880008I
1.54119 + 2.76193I 3.74007 2.60897I
u = 0.639376 + 0.195260I
a = 2.34545 0.43868I
b = 0.654214 + 0.889738I
0.81009 + 5.04742I 8.02999 8.42703I
u = 0.639376 0.195260I
a = 2.34545 + 0.43868I
b = 0.654214 0.889738I
0.81009 5.04742I 8.02999 + 8.42703I
u = 0.535329 + 0.395031I
a = 0.72597 + 2.21083I
b = 0.176464 0.974491I
1.96190 + 2.14353I 0.48240 5.32337I
u = 0.535329 0.395031I
a = 0.72597 2.21083I
b = 0.176464 + 0.974491I
1.96190 2.14353I 0.48240 + 5.32337I
u = 1.378940 + 0.142145I
a = 0.499258 0.680732I
b = 0.644422 + 0.661579I
6.70970 + 3.00332I 0
u = 1.378940 0.142145I
a = 0.499258 + 0.680732I
b = 0.644422 0.661579I
6.70970 3.00332I 0
u = 0.363836 + 0.462721I
a = 1.38698 + 2.18023I
b = 0.033354 0.884096I
2.47588 + 0.92435I 1.91401 4.19238I
u = 0.363836 0.462721I
a = 1.38698 2.18023I
b = 0.033354 + 0.884096I
2.47588 0.92435I 1.91401 + 4.19238I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.42295 + 0.10139I
a = 0.310419 0.898915I
b = 0.574977 + 0.965428I
5.75578 + 1.76368I 0
u = 1.42295 0.10139I
a = 0.310419 + 0.898915I
b = 0.574977 0.965428I
5.75578 1.76368I 0
u = 1.43142 + 0.07936I
a = 1.220480 0.666038I
b = 0.061312 + 0.624389I
4.32668 1.79922I 0
u = 1.43142 0.07936I
a = 1.220480 + 0.666038I
b = 0.061312 0.624389I
4.32668 + 1.79922I 0
u = 0.378088 + 0.391436I
a = 0.149787 1.097520I
b = 0.493469 + 0.542722I
1.13035 0.98038I 9.44439 + 5.04601I
u = 0.378088 0.391436I
a = 0.149787 + 1.097520I
b = 0.493469 0.542722I
1.13035 + 0.98038I 9.44439 5.04601I
u = 1.45615 + 0.08976I
a = 1.01574 + 1.04774I
b = 0.145990 0.826005I
3.41948 2.73930I 0
u = 1.45615 0.08976I
a = 1.01574 1.04774I
b = 0.145990 + 0.826005I
3.41948 + 2.73930I 0
u = 0.269672 + 0.456052I
a = 2.17570 2.31816I
b = 0.187057 + 0.849183I
1.13367 + 3.50081I 0.27253 1.56313I
u = 0.269672 0.456052I
a = 2.17570 + 2.31816I
b = 0.187057 0.849183I
1.13367 3.50081I 0.27253 + 1.56313I
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.345458 + 0.308634I
a = 0.16531 1.86311I
b = 0.537021 + 0.956459I
0.00299 3.22788I 5.50185 1.31175I
u = 0.345458 0.308634I
a = 0.16531 + 1.86311I
b = 0.537021 0.956459I
0.00299 + 3.22788I 5.50185 + 1.31175I
u = 0.162481 + 0.408835I
a = 1.44324 0.12966I
b = 0.318816 + 0.244523I
0.51706 1.49158I 5.11534 + 4.83543I
u = 0.162481 0.408835I
a = 1.44324 + 0.12966I
b = 0.318816 0.244523I
0.51706 + 1.49158I 5.11534 4.83543I
u = 1.57045 + 0.06947I
a = 0.56984 + 1.35554I
b = 0.279628 1.103440I
5.18358 3.62251I 0
u = 1.57045 0.06947I
a = 0.56984 1.35554I
b = 0.279628 + 1.103440I
5.18358 + 3.62251I 0
u = 1.61840 + 0.04481I
a = 1.367660 0.140722I
b = 0.774064 + 0.910389I
8.72706 5.87646I 0
u = 1.61840 0.04481I
a = 1.367660 + 0.140722I
b = 0.774064 0.910389I
8.72706 + 5.87646I 0
u = 1.61803 + 0.10068I
a = 0.52547 1.48304I
b = 0.253191 + 1.186100I
8.02622 + 8.25020I 0
u = 1.61803 0.10068I
a = 0.52547 + 1.48304I
b = 0.253191 1.186100I
8.02622 8.25020I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.65295 + 0.15535I
a = 1.21356 0.98307I
b = 0.785284 + 1.028100I
12.2488 9.4695I 0
u = 1.65295 0.15535I
a = 1.21356 + 0.98307I
b = 0.785284 1.028100I
12.2488 + 9.4695I 0
u = 1.65992 + 0.04982I
a = 0.142293 + 0.110211I
b = 0.885583 0.091250I
12.43950 4.45006I 0
u = 1.65992 0.04982I
a = 0.142293 0.110211I
b = 0.885583 + 0.091250I
12.43950 + 4.45006I 0
u = 1.65878 + 0.18881I
a = 1.14079 + 1.15178I
b = 0.784282 1.059400I
15.1084 + 14.9979I 0
u = 1.65878 0.18881I
a = 1.14079 1.15178I
b = 0.784282 + 1.059400I
15.1084 14.9979I 0
u = 1.66569 + 0.12660I
a = 0.219521 + 0.247710I
b = 0.899613 + 0.742060I
13.14280 + 3.23432I 0
u = 1.66569 0.12660I
a = 0.219521 0.247710I
b = 0.899613 0.742060I
13.14280 3.23432I 0
u = 1.67592 + 0.16565I
a = 0.056375 0.215125I
b = 0.934162 0.708886I
16.2081 8.6708I 0
u = 1.67592 0.16565I
a = 0.056375 + 0.215125I
b = 0.934162 + 0.708886I
16.2081 + 8.6708I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.69835 + 0.12447I
a = 0.974819 + 0.805892I
b = 0.834072 1.009660I
17.4538 + 5.5952I 0
u = 1.69835 0.12447I
a = 0.974819 0.805892I
b = 0.834072 + 1.009660I
17.4538 5.5952I 0
u = 1.71155 + 0.09018I
a = 0.321141 0.008755I
b = 0.926120 0.804268I
18.1024 + 0.8823I 0
u = 1.71155 0.09018I
a = 0.321141 + 0.008755I
b = 0.926120 + 0.804268I
18.1024 0.8823I 0
11
II. I
u
2
= h2b + 2a u + 2, 2a
2
2au + 2a u + 3, u
2
2i
(i) Arc colorings
a
4
=
0
u
a
8
=
1
0
a
9
=
1
2
a
5
=
u
u
a
10
=
1
0
a
6
=
0
u
a
12
=
a
a +
1
2
u 1
a
7
=
1
2
au +
1
2
u
1
2
a +
1
2
u
a
3
=
1
2
au
1
2
u + 1
a
2
=
1
2
au
1
2
au + u
a
11
=
1
2
u 1
a +
1
2
u 1
a
1
=
1
2
au +
1
2
u
1
2
a +
1
2
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8a 4u 4
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
11
c
12
(u
2
u + 1)
2
c
3
, c
6
, c
7
c
10
(u
2
+ u + 1)
2
c
4
, c
5
, c
8
c
9
(u
2
2)
2
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
6
, c
7
, c
10
c
11
, c
12
(y
2
+ y + 1)
2
c
4
, c
5
, c
8
c
9
(y 2)
4
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.41421
a = 0.207107 + 0.866025I
b = 0.500000 0.866025I
4.93480 4.05977I 8.00000 + 6.92820I
u = 1.41421
a = 0.207107 0.866025I
b = 0.500000 + 0.866025I
4.93480 + 4.05977I 8.00000 6.92820I
u = 1.41421
a = 1.20711 + 0.86603I
b = 0.500000 0.866025I
4.93480 4.05977I 8.00000 + 6.92820I
u = 1.41421
a = 1.20711 0.86603I
b = 0.500000 + 0.866025I
4.93480 + 4.05977I 8.00000 6.92820I
15
III. I
u
3
= ha
4
u + 4a
3
u + · · · 11a 2, 2a
4
u + 3a
3
u + · · · + 13a 1, u
2
+ u 1i
(i) Arc colorings
a
4
=
0
u
a
8
=
1
0
a
9
=
1
u + 1
a
5
=
u
u + 1
a
10
=
u
u
a
6
=
1
0
a
12
=
a
0.0400000a
4
u 0.160000a
3
u + ··· + 0.440000a + 0.0800000
a
7
=
0.320000a
4
u + 0.280000a
3
u + ··· + 0.680000a + 0.960000
0.640000a
4
u 0.440000a
3
u + ··· + 0.360000a 0.0800000
a
3
=
0.0400000a
4
u 0.160000a
3
u + ··· + 1.44000a + 0.0800000
0.0400000a
4
u 0.160000a
3
u + ··· + 0.440000a + 0.0800000
a
2
=
a
0.0400000a
4
u 0.160000a
3
u + ··· + 0.440000a + 0.0800000
a
11
=
0.0400000a
4
u 0.160000a
3
u + ··· + 1.44000a + 0.0800000
0.0400000a
4
u 0.160000a
3
u + ··· + 0.440000a + 0.0800000
a
1
=
1.04000a
4
u 0.160000a
3
u + ··· 1.36000a 0.320000
0.560000a
4
u 0.240000a
3
u + ··· 0.240000a 0.0800000
(ii) Obstruction class = 1
(iii) Cusp Shapes = 10
16
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
10
+ 4u
9
+ 10u
8
+ 16u
7
+ 19u
6
+ 13u
5
+ 4u
4
5u
3
5u
2
3u + 1
c
2
, c
6
, c
7
c
11
u
10
+ 2u
8
+ 3u
6
u
5
+ 2u
4
u
3
+ u
2
u 1
c
3
u
10
+ 2u
8
+ 2u
7
3u
6
3u
5
8u
4
+ u
3
+ 9u
2
5u 5
c
4
, c
5
, c
8
c
9
(u
2
u 1)
5
c
10
, c
12
u
10
4u
9
+ 10u
8
16u
7
+ 19u
6
13u
5
+ 4u
4
+ 5u
3
5u
2
+ 3u + 1
17
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
10
, c
12
y
10
+ 4y
9
+ ··· 19y + 1
c
2
, c
6
, c
7
c
11
y
10
+ 4y
9
+ 10y
8
+ 16y
7
+ 19y
6
+ 13y
5
+ 4y
4
5y
3
5y
2
3y + 1
c
3
y
10
+ 4y
9
+ ··· 115y + 25
c
4
, c
5
, c
8
c
9
(y
2
3y + 1)
5
18
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.618034
a = 0.0866109
b = 0.481001
0.986960 10.0000
u = 0.618034
a = 1.73755 + 0.98693I
b = 0.643219 + 0.835211I
0.986960 10.0000
u = 0.618034
a = 1.73755 0.98693I
b = 0.643219 0.835211I
0.986960 10.0000
u = 0.618034
a = 0.07621 + 2.16163I
b = 0.402718 0.997003I
0.986960 10.0000
u = 0.618034
a = 0.07621 2.16163I
b = 0.402718 + 0.997003I
0.986960 10.0000
u = 1.61803
a = 1.122050 + 0.202875I
b = 0.786437 + 0.860119I
8.88264 10.0000
u = 1.61803
a = 1.122050 0.202875I
b = 0.786437 0.860119I
8.88264 10.0000
u = 1.61803
a = 0.380191 + 1.332290I
b = 0.388630 1.160270I
8.88264 10.0000
u = 1.61803
a = 0.380191 1.332290I
b = 0.388630 + 1.160270I
8.88264 10.0000
u = 1.61803
a = 0.247641
b = 0.795614
8.88264 10.0000
19
IV. I
u
4
= hau + b + 2a + u + 2, 2a
2
+ au + 2a u + 3, u
2
2i
(i) Arc colorings
a
4
=
0
u
a
8
=
1
0
a
9
=
1
2
a
5
=
u
u
a
10
=
1
0
a
6
=
0
u
a
12
=
a
au 2a u 2
a
7
=
au a
1
2
u 1
au 2a u 1
a
3
=
au a u 1
au 2a 2
a
2
=
au a u 1
3au 4a 2u 4
a
11
=
au a u 2
au 2a u 2
a
1
=
au a
1
2
u 1
au 2a u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8
20
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
11
c
12
(u
2
u + 1)
2
c
3
, c
6
, c
7
c
10
(u
2
+ u + 1)
2
c
4
, c
5
, c
8
c
9
(u
2
2)
2
21
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
6
, c
7
, c
10
c
11
, c
12
(y
2
+ y + 1)
2
c
4
, c
5
, c
8
c
9
(y 2)
4
22
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.41421
a = 0.853553 + 0.253653I
b = 0.500000 0.866025I
4.93480 8.00000
u = 1.41421
a = 0.853553 0.253653I
b = 0.500000 + 0.866025I
4.93480 8.00000
u = 1.41421
a = 0.14645 + 1.47840I
b = 0.500000 0.866025I
4.93480 8.00000
u = 1.41421
a = 0.14645 1.47840I
b = 0.500000 + 0.866025I
4.93480 8.00000
23
V. I
v
1
= ha, b v 1, v
2
+ v + 1i
(i) Arc colorings
a
4
=
v
0
a
8
=
1
0
a
9
=
1
0
a
5
=
v
0
a
10
=
1
0
a
6
=
v
0
a
12
=
0
v + 1
a
7
=
1
v
a
3
=
1
1
a
2
=
v 2
1
a
11
=
v + 1
v + 1
a
1
=
1
v
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8v 2
24
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
6
c
7
, c
12
u
2
u + 1
c
2
, c
10
, c
11
u
2
+ u + 1
c
4
, c
5
, c
8
c
9
u
2
25
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
6
, c
7
, c
10
c
11
, c
12
y
2
+ y + 1
c
4
, c
5
, c
8
c
9
y
2
26
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 0.500000 + 0.866025I
a = 0
b = 0.500000 + 0.866025I
4.05977I 6.00000 + 6.92820I
v = 0.500000 0.866025I
a = 0
b = 0.500000 0.866025I
4.05977I 6.00000 6.92820I
27
VI. I
v
2
= ha, b
2
b + 1, v 1i
(i) Arc colorings
a
4
=
1
0
a
8
=
1
0
a
9
=
1
0
a
5
=
1
0
a
10
=
1
0
a
6
=
1
0
a
12
=
0
b
a
7
=
1
b + 1
a
3
=
b
b
a
2
=
0
b
a
11
=
b
b
a
1
=
1
b 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
28
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
6
c
7
, c
12
u
2
u + 1
c
2
, c
10
, c
11
u
2
+ u + 1
c
4
, c
5
, c
8
c
9
u
2
29
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
6
, c
7
, c
10
c
11
, c
12
y
2
+ y + 1
c
4
, c
5
, c
8
c
9
y
2
30
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
2
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 0.500000 + 0.866025I
0 0
v = 1.00000
a = 0
b = 0.500000 0.866025I
0 0
31
VII. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
2
u + 1)
6
· (u
10
+ 4u
9
+ 10u
8
+ 16u
7
+ 19u
6
+ 13u
5
+ 4u
4
5u
3
5u
2
3u + 1)
· (u
64
+ 35u
63
+ ··· + 416u + 49)
c
2
((u
2
u + 1)
4
)(u
2
+ u + 1)
2
(u
10
+ 2u
8
+ ··· u 1)
· (u
64
3u
63
+ ··· 16u + 7)
c
3
(u
2
u + 1)
2
(u
2
+ u + 1)
4
· (u
10
+ 2u
8
+ 2u
7
3u
6
3u
5
8u
4
+ u
3
+ 9u
2
5u 5)
· (u
64
+ 3u
63
+ ··· 4558u + 763)
c
4
, c
5
, c
8
c
9
u
4
(u
2
2)
4
(u
2
u 1)
5
(u
64
+ 4u
63
+ ··· 32u + 16)
c
6
((u
2
u + 1)
2
)(u
2
+ u + 1)
4
(u
10
+ 2u
8
+ ··· u 1)
· (u
64
3u
63
+ ··· 16u + 7)
c
7
((u
2
u + 1)
2
)(u
2
+ u + 1)
4
(u
10
+ 2u
8
+ ··· u 1)
· (u
64
+ 3u
63
+ ··· 6u + 7)
c
10
(u
2
+ u + 1)
6
· (u
10
4u
9
+ 10u
8
16u
7
+ 19u
6
13u
5
+ 4u
4
+ 5u
3
5u
2
+ 3u + 1)
· (u
64
19u
63
+ ··· 608u + 49)
c
11
((u
2
u + 1)
4
)(u
2
+ u + 1)
2
(u
10
+ 2u
8
+ ··· u 1)
· (u
64
+ 3u
63
+ ··· 6u + 7)
c
12
(u
2
u + 1)
6
· (u
10
4u
9
+ 10u
8
16u
7
+ 19u
6
13u
5
+ 4u
4
+ 5u
3
5u
2
+ 3u + 1)
· (u
64
19u
63
+ ··· 608u + 49)
32
VIII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y
2
+ y + 1)
6
)(y
10
+ 4y
9
+ ··· 19y + 1)
· (y
64
5y
63
+ ··· 30760y + 2401)
c
2
, c
6
(y
2
+ y + 1)
6
· (y
10
+ 4y
9
+ 10y
8
+ 16y
7
+ 19y
6
+ 13y
5
+ 4y
4
5y
3
5y
2
3y + 1)
· (y
64
+ 35y
63
+ ··· + 416y + 49)
c
3
((y
2
+ y + 1)
6
)(y
10
+ 4y
9
+ ··· 115y + 25)
· (y
64
45y
63
+ ··· + 15204664y + 582169)
c
4
, c
5
, c
8
c
9
y
4
(y 2)
8
(y
2
3y + 1)
5
(y
64
76y
63
+ ··· 1024y + 256)
c
7
, c
11
(y
2
+ y + 1)
6
· (y
10
+ 4y
9
+ 10y
8
+ 16y
7
+ 19y
6
+ 13y
5
+ 4y
4
5y
3
5y
2
3y + 1)
· (y
64
+ 19y
63
+ ··· + 608y + 49)
c
10
, c
12
((y
2
+ y + 1)
6
)(y
10
+ 4y
9
+ ··· 19y + 1)
· (y
64
+ 59y
63
+ ··· + 133272y + 2401)
33