12a
0217
(K12a
0217
)
A knot diagram
1
Linearized knot diagam
3 6 7 9 10 2 12 4 11 5 1 8
Solving Sequence
7,12 4,8
9 5 1 3 2 6 11 10
c
7
c
8
c
4
c
12
c
3
c
1
c
6
c
11
c
10
c
2
, c
5
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h3.70721 × 10
195
u
111
+ 1.47324 × 10
196
u
110
+ ··· + 3.10521 × 10
195
b + 1.11699 × 10
197
,
2.13027 × 10
197
u
111
6.51014 × 10
197
u
110
+ ··· + 8.07355 × 10
196
a 3.95389 × 10
198
,
u
112
+ 3u
111
+ ··· 15u + 13i
I
u
2
= h76a
7
+ 266a
6
+ 388a
5
+ 305a
4
+ 824a
3
+ 1064a
2
+ 1105b + 204a 624,
a
8
+ 4a
7
+ 6a
6
+ 4a
5
+ 9a
4
+ 16a
3
4a
2
12a + 13, u 1i
I
u
3
= h2a
5
5a
4
+ 10a
3
10a
2
+ 3b + 10a 2, a
6
3a
5
+ 6a
4
7a
3
+ 6a
2
3a + 1, u + 1i
* 3 irreducible components of dim
C
= 0, with total 126 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h3.71 × 10
195
u
111
+ 1.47 × 10
196
u
110
+ · · · + 3.11 × 10
195
b + 1.12 ×
10
197
, 2.13 × 10
197
u
111
6.51 × 10
197
u
110
+ · · · + 8.07 × 10
196
a 3.95 ×
10
198
, u
112
+ 3u
111
+ · · · 15u + 13i
(i) Arc colorings
a
7
=
1
0
a
12
=
0
u
a
4
=
2.63857u
111
+ 8.06354u
110
+ ··· 122.697u + 48.9733
1.19387u
111
4.74441u
110
+ ··· + 90.6056u 35.9714
a
8
=
1
u
2
a
9
=
2.99707u
111
6.01775u
110
+ ··· + 45.9311u 22.1710
2.77255u
111
+ 5.99213u
110
+ ··· 52.3866u + 32.6865
a
5
=
0.435309u
111
+ 0.367120u
110
+ ··· + 24.5090u 6.98519
0.0312273u
111
1.16652u
110
+ ··· + 26.8632u 5.19030
a
1
=
u
u
3
+ u
a
3
=
1.44470u
111
+ 3.31913u
110
+ ··· 32.0910u + 13.0019
1.19387u
111
4.74441u
110
+ ··· + 90.6056u 35.9714
a
2
=
1.04869u
111
+ 2.45896u
110
+ ··· 15.8751u + 5.26265
0.166715u
111
1.01686u
110
+ ··· + 45.7581u 16.0720
a
6
=
1.75205u
111
+ 4.39266u
110
+ ··· 71.5032u + 30.3190
0.327588u
111
2.29232u
110
+ ··· + 70.4015u 30.0065
a
11
=
u
3
u
5
u
3
+ u
a
10
=
0.172592u
111
+ 1.01161u
110
+ ··· 22.2733u + 16.4299
3.14906u
111
+ 6.75817u
110
+ ··· 57.4630u + 36.9248
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.990034u
111
3.77498u
110
+ ··· + 48.5280u 1.50406
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
112
+ 56u
111
+ ··· + 8u + 1
c
2
, c
6
u
112
2u
111
+ ··· 2u + 1
c
3
u
112
+ 2u
111
+ ··· 328230u + 69121
c
4
, c
8
u
112
u
111
+ ··· + 3468u + 548
c
5
, c
10
u
112
+ u
111
+ ··· + 4u + 4
c
7
, c
12
u
112
3u
111
+ ··· + 15u + 13
c
9
u
112
+ 61u
111
+ ··· + 80u + 16
c
11
u
112
53u
111
+ ··· 1577u + 169
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
112
+ 8y
111
+ ··· + 56y + 1
c
2
, c
6
y
112
+ 56y
111
+ ··· + 8y + 1
c
3
y
112
40y
111
+ ··· 53022343592y + 4777712641
c
4
, c
8
y
112
91y
111
+ ··· + 5715024y + 300304
c
5
, c
10
y
112
+ 61y
111
+ ··· + 80y + 16
c
7
, c
12
y
112
53y
111
+ ··· 1577y + 169
c
9
y
112
15y
111
+ ··· 5888y + 256
c
11
y
112
+ 27y
111
+ ··· + 1838795y + 28561
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.450808 + 0.886061I
a = 0.385754 0.040786I
b = 1.27595 + 0.62290I
6.67919 + 6.50991I 0
u = 0.450808 0.886061I
a = 0.385754 + 0.040786I
b = 1.27595 0.62290I
6.67919 6.50991I 0
u = 0.857146 + 0.529607I
a = 1.30120 1.40188I
b = 0.70030 + 1.48450I
2.77096 3.67618I 0
u = 0.857146 0.529607I
a = 1.30120 + 1.40188I
b = 0.70030 1.48450I
2.77096 + 3.67618I 0
u = 0.982487 + 0.247895I
a = 1.327630 + 0.482226I
b = 0.239739 0.493297I
0.50416 3.69973I 0
u = 0.982487 0.247895I
a = 1.327630 0.482226I
b = 0.239739 + 0.493297I
0.50416 + 3.69973I 0
u = 0.542277 + 0.856250I
a = 0.410024 + 0.164661I
b = 1.317720 + 0.427134I
7.27631 2.43835I 0
u = 0.542277 0.856250I
a = 0.410024 0.164661I
b = 1.317720 0.427134I
7.27631 + 2.43835I 0
u = 0.859585 + 0.537868I
a = 0.62765 + 1.81967I
b = 0.16337 1.53346I
2.75459 0.62134I 0
u = 0.859585 0.537868I
a = 0.62765 1.81967I
b = 0.16337 + 1.53346I
2.75459 + 0.62134I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.924121 + 0.335108I
a = 0.886266 + 0.776763I
b = 0.493959 0.455629I
1.76222 0.70527I 0
u = 0.924121 0.335108I
a = 0.886266 0.776763I
b = 0.493959 + 0.455629I
1.76222 + 0.70527I 0
u = 0.827119 + 0.592053I
a = 0.084030 + 0.863952I
b = 1.010450 0.284902I
2.31541 + 2.35649I 0
u = 0.827119 0.592053I
a = 0.084030 0.863952I
b = 1.010450 + 0.284902I
2.31541 2.35649I 0
u = 0.716957 + 0.742374I
a = 0.111903 1.026480I
b = 1.094290 0.151911I
5.89050 1.33250I 0
u = 0.716957 0.742374I
a = 0.111903 + 1.026480I
b = 1.094290 + 0.151911I
5.89050 + 1.33250I 0
u = 0.432380 + 0.943489I
a = 0.070653 0.187610I
b = 1.49402 0.53409I
6.28686 6.63610I 0
u = 0.432380 0.943489I
a = 0.070653 + 0.187610I
b = 1.49402 + 0.53409I
6.28686 + 6.63610I 0
u = 0.825612 + 0.491984I
a = 1.32726 0.52908I
b = 0.998165 + 0.528922I
2.45947 + 0.05845I 0
u = 0.825612 0.491984I
a = 1.32726 + 0.52908I
b = 0.998165 0.528922I
2.45947 0.05845I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.473978 + 0.832935I
a = 0.307480 + 0.052481I
b = 1.207370 + 0.525705I
3.39240 1.77371I 0
u = 0.473978 0.832935I
a = 0.307480 0.052481I
b = 1.207370 0.525705I
3.39240 + 1.77371I 0
u = 0.902487 + 0.542851I
a = 0.983035 0.938609I
b = 1.122520 + 0.558603I
0.48475 4.79014I 0
u = 0.902487 0.542851I
a = 0.983035 + 0.938609I
b = 1.122520 0.558603I
0.48475 + 4.79014I 0
u = 0.787367 + 0.518126I
a = 0.28509 1.47521I
b = 0.749352 0.222493I
0.866759 + 0.474494I 0
u = 0.787367 0.518126I
a = 0.28509 + 1.47521I
b = 0.749352 + 0.222493I
0.866759 0.474494I 0
u = 0.916095 + 0.534423I
a = 0.05813 1.46802I
b = 0.638335 0.051172I
2.10127 + 4.07115I 0
u = 0.916095 0.534423I
a = 0.05813 + 1.46802I
b = 0.638335 + 0.051172I
2.10127 4.07115I 0
u = 0.408830 + 0.981568I
a = 0.152996 0.099204I
b = 1.55730 0.57237I
9.5603 + 11.5301I 0
u = 0.408830 0.981568I
a = 0.152996 + 0.099204I
b = 1.55730 + 0.57237I
9.5603 11.5301I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.940382 + 0.501312I
a = 0.71959 + 1.70667I
b = 0.02383 1.47836I
0.90883 + 4.57646I 0
u = 0.940382 0.501312I
a = 0.71959 1.70667I
b = 0.02383 + 1.47836I
0.90883 4.57646I 0
u = 0.817130 + 0.443293I
a = 1.22803 1.37489I
b = 0.63907 + 1.37754I
0.390538 0.715302I 0
u = 0.817130 0.443293I
a = 1.22803 + 1.37489I
b = 0.63907 1.37754I
0.390538 + 0.715302I 0
u = 0.486952 + 0.964165I
a = 0.163677 0.311624I
b = 1.52422 0.44200I
10.37660 + 2.41346I 0
u = 0.486952 0.964165I
a = 0.163677 + 0.311624I
b = 1.52422 + 0.44200I
10.37660 2.41346I 0
u = 0.628444 + 0.885268I
a = 0.095945 + 0.286157I
b = 1.066020 0.133992I
7.62067 + 1.92280I 0
u = 0.628444 0.885268I
a = 0.095945 0.286157I
b = 1.066020 + 0.133992I
7.62067 1.92280I 0
u = 1.068720 + 0.200240I
a = 0.771960 0.227365I
b = 0.007372 0.383032I
1.16926 + 3.61056I 0
u = 1.068720 0.200240I
a = 0.771960 + 0.227365I
b = 0.007372 + 0.383032I
1.16926 3.61056I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.058450 + 0.308302I
a = 1.24886 0.99979I
b = 0.880552 + 1.104800I
2.38675 0.29739I 0
u = 1.058450 0.308302I
a = 1.24886 + 0.99979I
b = 0.880552 1.104800I
2.38675 + 0.29739I 0
u = 0.595632 + 0.930937I
a = 0.176599 + 0.385479I
b = 1.043590 0.232052I
11.13740 + 2.81193I 0
u = 0.595632 0.930937I
a = 0.176599 0.385479I
b = 1.043590 + 0.232052I
11.13740 2.81193I 0
u = 0.964229 + 0.556788I
a = 0.79637 + 1.78638I
b = 0.01568 1.58229I
2.19982 9.15039I 0
u = 0.964229 0.556788I
a = 0.79637 1.78638I
b = 0.01568 + 1.58229I
2.19982 + 9.15039I 0
u = 0.710133 + 0.516149I
a = 1.22205 1.44142I
b = 0.51058 + 1.46382I
3.04021 + 4.76122I 0
u = 0.710133 0.516149I
a = 1.22205 + 1.44142I
b = 0.51058 1.46382I
3.04021 4.76122I 0
u = 1.026700 + 0.466594I
a = 0.61616 + 1.41099I
b = 0.760345 0.729067I
2.85365 2.10734I 0
u = 1.026700 0.466594I
a = 0.61616 1.41099I
b = 0.760345 + 0.729067I
2.85365 + 2.10734I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.683523 + 0.911532I
a = 0.196028 + 0.173729I
b = 1.175360 0.135200I
11.47110 6.39364I 0
u = 0.683523 0.911532I
a = 0.196028 0.173729I
b = 1.175360 + 0.135200I
11.47110 + 6.39364I 0
u = 1.128500 + 0.163734I
a = 0.975074 + 0.371373I
b = 0.244105 0.495902I
2.03981 0.28607I 0
u = 1.128500 0.163734I
a = 0.975074 0.371373I
b = 0.244105 + 0.495902I
2.03981 + 0.28607I 0
u = 1.077690 + 0.373170I
a = 0.89327 + 1.29029I
b = 0.224378 1.187290I
3.45292 + 4.61019I 0
u = 1.077690 0.373170I
a = 0.89327 1.29029I
b = 0.224378 + 1.187290I
3.45292 4.61019I 0
u = 0.935018 + 0.685604I
a = 0.261151 0.878476I
b = 1.319890 + 0.435228I
5.24025 + 6.75819I 0
u = 0.935018 0.685604I
a = 0.261151 + 0.878476I
b = 1.319890 0.435228I
5.24025 6.75819I 0
u = 1.124260 + 0.296257I
a = 0.957803 + 0.993983I
b = 0.299323 0.964655I
3.69288 0.58388I 0
u = 1.124260 0.296257I
a = 0.957803 0.993983I
b = 0.299323 + 0.964655I
3.69288 + 0.58388I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.159940 + 0.082093I
a = 0.428704 + 0.164622I
b = 0.485355 0.495379I
0.70822 1.44061I 0
u = 1.159940 0.082093I
a = 0.428704 0.164622I
b = 0.485355 + 0.495379I
0.70822 + 1.44061I 0
u = 1.034010 + 0.566715I
a = 0.57827 1.57727I
b = 1.28455 + 0.69444I
0.58248 6.77944I 0
u = 1.034010 0.566715I
a = 0.57827 + 1.57727I
b = 1.28455 0.69444I
0.58248 + 6.77944I 0
u = 1.070670 + 0.522453I
a = 0.41055 + 1.62106I
b = 0.896892 0.834838I
2.17056 + 6.67494I 0
u = 1.070670 0.522453I
a = 0.41055 1.62106I
b = 0.896892 + 0.834838I
2.17056 6.67494I 0
u = 1.172020 + 0.235636I
a = 1.27232 0.71187I
b = 0.972807 + 0.902220I
2.30017 + 4.00091I 0
u = 1.172020 0.235636I
a = 1.27232 + 0.71187I
b = 0.972807 0.902220I
2.30017 4.00091I 0
u = 1.201560 + 0.102438I
a = 1.293600 + 0.269876I
b = 0.508248 0.311304I
0.78446 3.96097I 0
u = 1.201560 0.102438I
a = 1.293600 0.269876I
b = 0.508248 + 0.311304I
0.78446 + 3.96097I 0
11
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.381817 + 0.676898I
a = 0.724158 0.310670I
b = 1.116330 0.623866I
2.13751 6.65846I 1.74684 + 7.19781I
u = 0.381817 0.676898I
a = 0.724158 + 0.310670I
b = 1.116330 + 0.623866I
2.13751 + 6.65846I 1.74684 7.19781I
u = 0.530576 + 0.552072I
a = 0.821404 0.960181I
b = 0.941080 0.479178I
0.90996 + 2.19304I 60.10 0.954685I
u = 0.530576 0.552072I
a = 0.821404 + 0.960181I
b = 0.941080 + 0.479178I
0.90996 2.19304I 60.10 + 0.954685I
u = 1.087630 + 0.588067I
a = 0.32008 1.75702I
b = 1.37091 + 0.74625I
0.15222 + 11.58350I 0
u = 1.087630 0.588067I
a = 0.32008 + 1.75702I
b = 1.37091 0.74625I
0.15222 11.58350I 0
u = 1.036770 + 0.726840I
a = 0.06854 1.43617I
b = 0.799763 + 0.348331I
6.37547 + 4.01493I 0
u = 1.036770 0.726840I
a = 0.06854 + 1.43617I
b = 0.799763 0.348331I
6.37547 4.01493I 0
u = 1.013590 + 0.772413I
a = 0.11678 1.41252I
b = 0.904586 + 0.355156I
10.46070 + 0.23425I 0
u = 1.013590 0.772413I
a = 0.11678 + 1.41252I
b = 0.904586 0.355156I
10.46070 0.23425I 0
12
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.081080 + 0.678298I
a = 0.16557 + 1.64529I
b = 1.28240 0.82694I
5.64478 3.26168I 0
u = 1.081080 0.678298I
a = 0.16557 1.64529I
b = 1.28240 + 0.82694I
5.64478 + 3.26168I 0
u = 1.106860 + 0.643894I
a = 0.05335 + 1.74699I
b = 1.20472 0.90179I
1.48775 + 7.29013I 0
u = 1.106860 0.643894I
a = 0.05335 1.74699I
b = 1.20472 + 0.90179I
1.48775 7.29013I 0
u = 0.703712 + 0.100809I
a = 0.29810 + 1.73880I
b = 0.412036 1.130510I
0.64540 + 2.34760I 3.30070 5.06400I
u = 0.703712 0.100809I
a = 0.29810 1.73880I
b = 0.412036 + 1.130510I
0.64540 2.34760I 3.30070 + 5.06400I
u = 1.074640 + 0.737016I
a = 0.07256 1.47431I
b = 0.775909 + 0.426799I
9.67145 8.90991I 0
u = 1.074640 0.737016I
a = 0.07256 + 1.47431I
b = 0.775909 0.426799I
9.67145 + 8.90991I 0
u = 1.133230 + 0.656462I
a = 0.10862 + 1.83683I
b = 1.24411 0.96475I
4.61274 12.20790I 0
u = 1.133230 0.656462I
a = 0.10862 1.83683I
b = 1.24411 + 0.96475I
4.61274 + 12.20790I 0
13
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.320560 + 0.108558I
a = 1.293560 0.189033I
b = 1.047620 + 0.519491I
0.01600 + 3.48973I 0
u = 1.320560 0.108558I
a = 1.293560 + 0.189033I
b = 1.047620 0.519491I
0.01600 3.48973I 0
u = 1.158700 + 0.671263I
a = 0.21640 1.77484I
b = 1.57741 + 0.75572I
4.07231 + 12.53520I 0
u = 1.158700 0.671263I
a = 0.21640 + 1.77484I
b = 1.57741 0.75572I
4.07231 12.53520I 0
u = 1.143650 + 0.704530I
a = 0.28766 1.62742I
b = 1.60927 + 0.69063I
8.36778 8.49053I 0
u = 1.143650 0.704530I
a = 0.28766 + 1.62742I
b = 1.60927 0.69063I
8.36778 + 8.49053I 0
u = 1.356570 + 0.058794I
a = 1.273020 0.006187I
b = 1.036810 + 0.381627I
3.58530 + 0.61655I 0
u = 1.356570 0.058794I
a = 1.273020 + 0.006187I
b = 1.036810 0.381627I
3.58530 0.61655I 0
u = 1.182990 + 0.675532I
a = 0.30380 1.84456I
b = 1.61431 + 0.78845I
7.1880 17.5468I 0
u = 1.182990 0.675532I
a = 0.30380 + 1.84456I
b = 1.61431 0.78845I
7.1880 + 17.5468I 0
14
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.225025 + 0.596399I
a = 0.286234 0.057094I
b = 0.578271 + 0.650812I
0.04328 2.34631I 1.81701 + 3.47116I
u = 0.225025 0.596399I
a = 0.286234 + 0.057094I
b = 0.578271 0.650812I
0.04328 + 2.34631I 1.81701 3.47116I
u = 0.221549 + 0.591679I
a = 0.140575 + 1.066260I
b = 0.340236 + 0.151538I
3.63686 0.52707I 7.64565 + 0.08563I
u = 0.221549 0.591679I
a = 0.140575 1.066260I
b = 0.340236 0.151538I
3.63686 + 0.52707I 7.64565 0.08563I
u = 1.363180 + 0.136144I
a = 1.43861 0.16525I
b = 1.159640 + 0.507977I
3.22973 7.98182I 0
u = 1.363180 0.136144I
a = 1.43861 + 0.16525I
b = 1.159640 0.507977I
3.22973 + 7.98182I 0
u = 0.048150 + 0.456195I
a = 0.826428 + 0.180873I
b = 0.134291 + 0.725341I
0.61726 1.41846I 3.09666 + 4.67925I
u = 0.048150 0.456195I
a = 0.826428 0.180873I
b = 0.134291 0.725341I
0.61726 + 1.41846I 3.09666 4.67925I
u = 0.396967 + 0.201628I
a = 1.33484 + 2.21073I
b = 0.567097 + 0.562797I
2.48400 + 6.00879I 4.68112 8.65446I
u = 0.396967 0.201628I
a = 1.33484 2.21073I
b = 0.567097 0.562797I
2.48400 6.00879I 4.68112 + 8.65446I
15
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.164490 + 0.292346I
a = 0.48184 + 2.19627I
b = 0.345986 + 0.586919I
0.32189 1.84668I 0.17990 + 4.47002I
u = 0.164490 0.292346I
a = 0.48184 2.19627I
b = 0.345986 0.586919I
0.32189 + 1.84668I 0.17990 4.47002I
16
II. I
u
2
= h76a
7
+ 1105b + · · · + 204a 624, a
8
+ 4a
7
+ · · · 12a + 13, u 1i
(i) Arc colorings
a
7
=
1
0
a
12
=
0
1
a
4
=
a
0.0687783a
7
0.240724a
6
+ ··· 0.184615a + 0.564706
a
8
=
1
1
a
9
=
0.0343891a
7
+ 0.0615385a
6
+ ··· 0.260633a + 1.89412
0.0343891a
7
0.179186a
6
+ ··· 0.445249a 0.541176
a
5
=
0.186425a
7
+ 0.593665a
6
+ ··· 1.16833a 0.564706
0.130317a
7
0.397285a
6
+ ··· + 1.84525a + 0.788235
a
1
=
1
0
a
3
=
0.0687783a
7
0.240724a
6
+ ··· + 0.815385a + 0.564706
0.0687783a
7
0.240724a
6
+ ··· 0.184615a + 0.564706
a
2
=
0.0343891a
7
0.179186a
6
+ ··· 0.445249a + 1.45882
0.0687783a
7
0.240724a
6
+ ··· 0.184615a 0.435294
a
6
=
a
0.0687783a
7
+ 0.240724a
6
+ ··· + 0.184615a 0.564706
a
11
=
1
1
a
10
=
0.0343891a
7
+ 0.179186a
6
+ ··· + 0.445249a + 0.541176
0.0343891a
7
0.296833a
6
+ ··· 1.15113a + 0.811765
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
304
1105
a
7
1584
1105
a
6
3112
1105
a
5
712
221
a
4
5376
1105
a
3
8156
1105
a
2
3936
1105
a +
312
85
17
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u
2
u + 1)
4
c
3
, c
6
(u
2
+ u + 1)
4
c
4
, c
8
(u
4
2u
2
+ 2)
2
c
5
, c
10
(u
4
+ 2u
2
+ 2)
2
c
7
(u 1)
8
c
9
(u
2
2u + 2)
4
c
11
, c
12
(u + 1)
8
18
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
6
(y
2
+ y + 1)
4
c
4
, c
8
(y
2
2y + 2)
4
c
5
, c
10
(y
2
+ 2y + 2)
4
c
7
, c
11
, c
12
(y 1)
8
c
9
(y
2
+ 4)
4
19
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0.598684 + 0.410936I
b = 0.500000 0.866025I
0.82247 + 5.69375I 2.00000 7.46410I
u = 1.00000
a = 0.598684 0.410936I
b = 0.500000 + 0.866025I
0.82247 5.69375I 2.00000 + 7.46410I
u = 1.00000
a = 0.59868 + 1.32112I
b = 0.500000 0.866025I
0.82247 1.63398I 2.00000 + 0.53590I
u = 1.00000
a = 0.59868 1.32112I
b = 0.500000 + 0.866025I
0.82247 + 1.63398I 2.00000 0.53590I
u = 1.00000
a = 1.59868 + 0.41094I
b = 0.500000 0.866025I
0.82247 1.63398I 2.00000 + 0.53590I
u = 1.00000
a = 1.59868 0.41094I
b = 0.500000 + 0.866025I
0.82247 + 1.63398I 2.00000 0.53590I
u = 1.00000
a = 1.59868 + 1.32112I
b = 0.500000 0.866025I
0.82247 + 5.69375I 2.00000 7.46410I
u = 1.00000
a = 1.59868 1.32112I
b = 0.500000 + 0.866025I
0.82247 5.69375I 2.00000 + 7.46410I
20
III. I
u
3
=
h2a
5
5a
4
+10a
3
10a
2
+3b+10a2, a
6
3a
5
+6a
4
7a
3
+6a
2
3a+1, u+1i
(i) Arc colorings
a
7
=
1
0
a
12
=
0
1
a
4
=
a
2
3
a
5
+
5
3
a
4
+ ···
10
3
a +
2
3
a
8
=
1
1
a
9
=
1
3
a
5
+
2
3
a
4
+ ···
4
3
a +
5
3
1
3
a
5
a
4
+ 2a
3
8
3
a
2
+ 2a 2
a
5
=
a
5
7
3
a
4
+ ··· +
11
3
a
2
3
5
3
a
5
+ 4a
4
+ ··· 6a +
4
3
a
1
=
1
0
a
3
=
2
3
a
5
+
5
3
a
4
+ ···
7
3
a +
2
3
2
3
a
5
+
5
3
a
4
+ ···
10
3
a +
2
3
a
2
=
1
3
a
5
+ a
4
2a
3
+
8
3
a
2
2a
2
3
a
5
+
5
3
a
4
+ ···
10
3
a +
5
3
a
6
=
a
2
3
a
5
+
5
3
a
4
+ ···
10
3
a +
2
3
a
11
=
1
1
a
10
=
1
3
a
5
+ a
4
2a
3
+
8
3
a
2
2a + 2
1
3
a
5
4
3
a
4
+ ··· +
8
3
a
7
3
(ii) Obstruction class = 1
(iii) Cusp Shapes =
8
3
a
5
6a
4
+ 12a
3
34
3
a
2
+ 12a + 2
21
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
6
(u
2
u + 1)
3
c
2
(u
2
+ u + 1)
3
c
4
, c
5
, c
8
c
9
, c
10
u
6
c
7
, c
11
(u + 1)
6
c
12
(u 1)
6
22
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
6
(y
2
+ y + 1)
3
c
4
, c
5
, c
8
c
9
, c
10
y
6
c
7
, c
11
, c
12
(y 1)
6
23
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0.500000 + 0.866025I
b = 0.500000 0.866025I
1.64493 2.02988I 6.00000 + 3.46410I
u = 1.00000
a = 0.500000 + 0.866025I
b = 0.500000 0.866025I
1.64493 2.02988I 6.00000 + 3.46410I
u = 1.00000
a = 0.500000 + 0.866025I
b = 0.500000 0.866025I
1.64493 2.02988I 6.00000 + 3.46410I
u = 1.00000
a = 0.500000 0.866025I
b = 0.500000 + 0.866025I
1.64493 + 2.02988I 6.00000 3.46410I
u = 1.00000
a = 0.500000 0.866025I
b = 0.500000 + 0.866025I
1.64493 + 2.02988I 6.00000 3.46410I
u = 1.00000
a = 0.500000 0.866025I
b = 0.500000 + 0.866025I
1.64493 + 2.02988I 6.00000 3.46410I
24
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
2
u + 1)
7
)(u
112
+ 56u
111
+ ··· + 8u + 1)
c
2
((u
2
u + 1)
4
)(u
2
+ u + 1)
3
(u
112
2u
111
+ ··· 2u + 1)
c
3
((u
2
u + 1)
3
)(u
2
+ u + 1)
4
(u
112
+ 2u
111
+ ··· 328230u + 69121)
c
4
, c
8
u
6
(u
4
2u
2
+ 2)
2
(u
112
u
111
+ ··· + 3468u + 548)
c
5
, c
10
u
6
(u
4
+ 2u
2
+ 2)
2
(u
112
+ u
111
+ ··· + 4u + 4)
c
6
((u
2
u + 1)
3
)(u
2
+ u + 1)
4
(u
112
2u
111
+ ··· 2u + 1)
c
7
((u 1)
8
)(u + 1)
6
(u
112
3u
111
+ ··· + 15u + 13)
c
9
u
6
(u
2
2u + 2)
4
(u
112
+ 61u
111
+ ··· + 80u + 16)
c
11
((u + 1)
14
)(u
112
53u
111
+ ··· 1577u + 169)
c
12
((u 1)
6
)(u + 1)
8
(u
112
3u
111
+ ··· + 15u + 13)
25
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y
2
+ y + 1)
7
)(y
112
+ 8y
111
+ ··· + 56y + 1)
c
2
, c
6
((y
2
+ y + 1)
7
)(y
112
+ 56y
111
+ ··· + 8y + 1)
c
3
((y
2
+ y + 1)
7
)(y
112
40y
111
+ ··· 5.30223 × 10
10
y + 4.77771 × 10
9
)
c
4
, c
8
y
6
(y
2
2y + 2)
4
(y
112
91y
111
+ ··· + 5715024y + 300304)
c
5
, c
10
y
6
(y
2
+ 2y + 2)
4
(y
112
+ 61y
111
+ ··· + 80y + 16)
c
7
, c
12
((y 1)
14
)(y
112
53y
111
+ ··· 1577y + 169)
c
9
y
6
(y
2
+ 4)
4
(y
112
15y
111
+ ··· 5888y + 256)
c
11
((y 1)
14
)(y
112
+ 27y
111
+ ··· + 1838795y + 28561)
26