12a
0218
(K12a
0218
)
A knot diagram
1
Linearized knot diagam
3 6 7 9 10 2 12 5 4 1 8 11
Solving Sequence
5,8
9 4 10
6,12
7 3 2 11 1
c
8
c
4
c
9
c
5
c
7
c
3
c
2
c
11
c
12
c
1
, c
6
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h1.83761 × 10
47
u
83
+ 6.75612 × 10
47
u
82
+ ··· + 1.51134 × 10
48
b 6.34548 × 10
47
,
7.37805 × 10
46
u
83
+ 2.42262 × 10
47
u
82
+ ··· + 7.55672 × 10
47
a + 6.02649 × 10
48
, u
84
+ 4u
83
+ ··· + 96u + 16i
I
u
2
= h4b + 2a u + 2, 2a
2
2au + 5, u
2
+ 2i
I
u
3
= h−12751a
4
u
2
3476a
3
u
2
+ ··· + 134987a 145138,
2a
4
u
2
+ a
5
2a
3
u
2
+ 2a
4
+ 3a
3
u + 4a
2
u
2
+ a
3
+ 2a
2
u + 5u
2
a 4a
2
2au 3u
2
+ 9a + 5u 7,
u
3
u
2
+ 2u 1i
I
u
4
= hau + 9b + 4a + u + 4, 2a
2
+ au 3u + 5, u
2
+ 2i
I
v
1
= ha, b v 1, v
2
+ v + 1i
I
v
2
= ha, b
2
b + 1, v 1i
* 6 irreducible components of dim
C
= 0, with total 111 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h1.84×10
47
u
83
+6.76×10
47
u
82
+· · ·+1.51×10
48
b6.35×10
47
, 7.38×10
46
u
83
+
2.42 × 10
47
u
82
+ · · · + 7.56 × 10
47
a + 6.03 × 10
48
, u
84
+ 4u
83
+ · · · + 96u + 16i
(i) Arc colorings
a
5
=
0
u
a
8
=
1
0
a
9
=
1
u
2
a
4
=
u
u
3
+ u
a
10
=
u
2
+ 1
u
4
+ 2u
2
a
6
=
u
5
2u
3
u
u
7
3u
5
2u
3
+ u
a
12
=
0.0976356u
83
0.320592u
82
+ ··· 30.0041u 7.97502
0.121588u
83
0.447027u
82
+ ··· 3.28280u + 0.419857
a
7
=
0.198396u
83
+ 0.413274u
82
+ ··· + 2.76813u + 0.709068
0.112403u
83
+ 0.314145u
82
+ ··· 2.45717u 1.02935
a
3
=
0.405056u
83
+ 1.56056u
82
+ ··· + 59.3006u + 12.8650
0.138509u
83
+ 0.543278u
82
+ ··· + 26.3533u + 5.30097
a
2
=
0.411073u
83
+ 1.58363u
82
+ ··· + 39.6138u + 7.75297
0.123419u
83
+ 0.481396u
82
+ ··· + 31.0917u + 6.38943
a
11
=
0.219223u
83
0.767619u
82
+ ··· 33.2869u 7.55516
0.121588u
83
0.447027u
82
+ ··· 3.28280u + 0.419857
a
1
=
0.325649u
83
+ 1.35250u
82
+ ··· + 47.3100u + 8.96150
0.0405219u
83
+ 0.178471u
82
+ ··· + 36.9975u + 8.48326
(ii) Obstruction class = 1
(iii) Cusp Shapes = 1.25888u
83
3.47330u
82
+ ··· 45.0684u 15.7517
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
84
+ 43u
83
+ ··· + 80u + 9
c
2
, c
6
u
84
3u
83
+ ··· 8u + 3
c
3
u
84
+ 3u
83
+ ··· + 44270u + 12039
c
4
, c
8
, c
9
u
84
4u
83
+ ··· 96u + 16
c
5
u
84
+ 4u
83
+ ··· + 192992u + 185296
c
7
, c
11
u
84
+ 3u
83
+ ··· 22u + 3
c
10
, c
12
u
84
27u
83
+ ··· 80u + 9
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
84
+ 3y
83
+ ··· + 1988y + 81
c
2
, c
6
y
84
+ 43y
83
+ ··· + 80y + 9
c
3
y
84
37y
83
+ ··· + 1982120948y + 144937521
c
4
, c
8
, c
9
y
84
+ 76y
83
+ ··· + 9728y
2
+ 256
c
5
y
84
4y
83
+ ··· + 562686205952y + 34334607616
c
7
, c
11
y
84
+ 27y
83
+ ··· + 80y + 9
c
10
, c
12
y
84
+ 67y
83
+ ··· + 35684y + 81
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.350754 + 0.942596I
a = 0.642858 0.879615I
b = 0.771585 + 0.815019I
2.14146 2.52752I 0
u = 0.350754 0.942596I
a = 0.642858 + 0.879615I
b = 0.771585 0.815019I
2.14146 + 2.52752I 0
u = 0.540304 + 0.822649I
a = 0.042257 + 0.688019I
b = 0.755822 0.974029I
4.62886 + 7.84102I 0
u = 0.540304 0.822649I
a = 0.042257 0.688019I
b = 0.755822 + 0.974029I
4.62886 7.84102I 0
u = 0.495294 + 0.887879I
a = 0.473834 + 0.922359I
b = 0.821705 0.771878I
5.25459 1.93039I 0
u = 0.495294 0.887879I
a = 0.473834 0.922359I
b = 0.821705 + 0.771878I
5.25459 + 1.93039I 0
u = 0.408826 + 0.824363I
a = 0.073344 0.595451I
b = 0.731673 + 0.929862I
1.78240 3.16007I 0
u = 0.408826 0.824363I
a = 0.073344 + 0.595451I
b = 0.731673 0.929862I
1.78240 + 3.16007I 0
u = 0.449775 + 0.998287I
a = 0.107414 + 0.446418I
b = 0.793035 0.902515I
5.77493 0.50478I 0
u = 0.449775 0.998287I
a = 0.107414 0.446418I
b = 0.793035 + 0.902515I
5.77493 + 0.50478I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.826469 + 0.301584I
a = 1.43413 + 1.02708I
b = 0.752423 1.020840I
6.29688 12.60120I 7.95324 + 9.37514I
u = 0.826469 0.301584I
a = 1.43413 1.02708I
b = 0.752423 + 1.020840I
6.29688 + 12.60120I 7.95324 9.37514I
u = 0.829199 + 0.256834I
a = 0.196573 0.451034I
b = 0.858127 0.711648I
7.24866 + 6.60173I 9.74629 4.48762I
u = 0.829199 0.256834I
a = 0.196573 + 0.451034I
b = 0.858127 + 0.711648I
7.24866 6.60173I 9.74629 + 4.48762I
u = 0.834377 + 0.184117I
a = 1.35063 + 0.57913I
b = 0.779630 0.965446I
8.29808 4.07556I 10.87765 + 3.19682I
u = 0.834377 0.184117I
a = 1.35063 0.57913I
b = 0.779630 + 0.965446I
8.29808 + 4.07556I 10.87765 3.19682I
u = 0.839410 + 0.127426I
a = 0.581311 0.311001I
b = 0.839261 0.795078I
8.82615 1.96225I 11.76893 + 2.26917I
u = 0.839410 0.127426I
a = 0.581311 + 0.311001I
b = 0.839261 + 0.795078I
8.82615 + 1.96225I 11.76893 2.26917I
u = 0.433217 + 1.076530I
a = 0.663567 + 1.117850I
b = 0.814296 0.862710I
5.90386 + 6.51028I 0
u = 0.433217 1.076530I
a = 0.663567 1.117850I
b = 0.814296 + 0.862710I
5.90386 6.51028I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.783250 + 0.264115I
a = 1.60999 0.87791I
b = 0.739512 + 0.994581I
3.62130 + 7.46949I 5.36276 6.04622I
u = 0.783250 0.264115I
a = 1.60999 + 0.87791I
b = 0.739512 0.994581I
3.62130 7.46949I 5.36276 + 6.04622I
u = 0.068050 + 1.173920I
a = 0.11077 2.34272I
b = 0.412731 + 1.054140I
2.11004 + 4.12289I 0
u = 0.068050 1.173920I
a = 0.11077 + 2.34272I
b = 0.412731 1.054140I
2.11004 4.12289I 0
u = 0.239259 + 1.168840I
a = 0.380988 0.383419I
b = 0.714493 + 0.091333I
0.762339 0.275947I 0
u = 0.239259 1.168840I
a = 0.380988 + 0.383419I
b = 0.714493 0.091333I
0.762339 + 0.275947I 0
u = 0.777544 + 0.209804I
a = 0.362630 + 0.599070I
b = 0.815410 + 0.732335I
4.42446 1.63033I 7.06387 + 0.91981I
u = 0.777544 0.209804I
a = 0.362630 0.599070I
b = 0.815410 0.732335I
4.42446 + 1.63033I 7.06387 0.91981I
u = 0.168003 + 1.255030I
a = 0.019540 + 0.607170I
b = 0.711034 + 0.763554I
2.47373 2.56298I 0
u = 0.168003 1.255030I
a = 0.019540 0.607170I
b = 0.711034 0.763554I
2.47373 + 2.56298I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.713006 + 0.095615I
a = 0.334802 + 0.120967I
b = 0.722210 0.106046I
3.96162 + 3.79092I 11.61122 4.56726I
u = 0.713006 0.095615I
a = 0.334802 0.120967I
b = 0.722210 + 0.106046I
3.96162 3.79092I 11.61122 + 4.56726I
u = 0.668399 + 0.237900I
a = 0.67448 1.39382I
b = 0.213868 + 1.083920I
0.04595 6.79511I 4.41057 + 8.39005I
u = 0.668399 0.237900I
a = 0.67448 + 1.39382I
b = 0.213868 1.083920I
0.04595 + 6.79511I 4.41057 8.39005I
u = 0.288293 + 1.320130I
a = 0.367736 0.623675I
b = 0.776388 + 0.237242I
0.47634 + 7.41480I 0
u = 0.288293 1.320130I
a = 0.367736 + 0.623675I
b = 0.776388 0.237242I
0.47634 7.41480I 0
u = 0.576067 + 0.282806I
a = 0.82703 + 1.32861I
b = 0.165831 1.001990I
2.06976 + 2.29339I 0.00881 4.82687I
u = 0.576067 0.282806I
a = 0.82703 1.32861I
b = 0.165831 + 1.001990I
2.06976 2.29339I 0.00881 + 4.82687I
u = 0.132078 + 1.355200I
a = 0.22554 + 2.00262I
b = 0.514621 1.021830I
5.19651 1.43194I 0
u = 0.132078 1.355200I
a = 0.22554 2.00262I
b = 0.514621 + 1.021830I
5.19651 + 1.43194I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.247258 + 1.348180I
a = 1.55578 + 1.82417I
b = 0.698833 0.975302I
3.79061 + 8.31615I 0
u = 0.247258 1.348180I
a = 1.55578 1.82417I
b = 0.698833 + 0.975302I
3.79061 8.31615I 0
u = 0.362756 + 1.332060I
a = 0.581243 + 0.024357I
b = 0.851771 + 0.728928I
4.25572 + 2.35314I 0
u = 0.362756 1.332060I
a = 0.581243 0.024357I
b = 0.851771 0.728928I
4.25572 2.35314I 0
u = 0.038709 + 1.381560I
a = 0.681056 + 0.333747I
b = 0.200806 0.178820I
4.96495 2.19922I 0
u = 0.038709 1.381560I
a = 0.681056 0.333747I
b = 0.200806 + 0.178820I
4.96495 + 2.19922I 0
u = 0.600064 + 0.128543I
a = 2.60142 + 0.17153I
b = 0.673393 + 0.902935I
0.89912 + 5.19420I 7.11874 7.76852I
u = 0.600064 0.128543I
a = 2.60142 0.17153I
b = 0.673393 0.902935I
0.89912 5.19420I 7.11874 + 7.76852I
u = 0.454019 + 0.410951I
a = 1.32194 + 1.40913I
b = 0.032813 0.909390I
2.60505 + 0.90512I 2.28754 4.05492I
u = 0.454019 0.410951I
a = 1.32194 1.40913I
b = 0.032813 + 0.909390I
2.60505 0.90512I 2.28754 + 4.05492I
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.23621 + 1.39451I
a = 0.71816 2.47299I
b = 0.144636 + 1.099660I
7.38356 + 5.30799I 0
u = 0.23621 1.39451I
a = 0.71816 + 2.47299I
b = 0.144636 1.099660I
7.38356 5.30799I 0
u = 0.35405 + 1.37132I
a = 1.00055 1.87993I
b = 0.757561 + 1.008790I
3.39478 8.35215I 0
u = 0.35405 1.37132I
a = 1.00055 + 1.87993I
b = 0.757561 1.008790I
3.39478 + 8.35215I 0
u = 0.27368 + 1.39259I
a = 0.67813 + 2.52469I
b = 0.157124 1.142510I
5.14150 10.24960I 0
u = 0.27368 1.39259I
a = 0.67813 2.52469I
b = 0.157124 + 1.142510I
5.14150 + 10.24960I 0
u = 0.354969 + 0.458153I
a = 1.89488 1.64861I
b = 0.181249 + 0.882030I
1.20125 + 3.56606I 0.00892 1.69990I
u = 0.354969 0.458153I
a = 1.89488 + 1.64861I
b = 0.181249 0.882030I
1.20125 3.56606I 0.00892 + 1.69990I
u = 0.31969 + 1.38632I
a = 0.720461 0.134519I
b = 0.839786 0.673215I
0.63547 5.59776I 0
u = 0.31969 1.38632I
a = 0.720461 + 0.134519I
b = 0.839786 + 0.673215I
0.63547 + 5.59776I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.16228 + 1.42710I
a = 0.95852 2.33237I
b = 0.069061 + 0.988963I
8.46071 + 3.17427I 0
u = 0.16228 1.42710I
a = 0.95852 + 2.33237I
b = 0.069061 0.988963I
8.46071 3.17427I 0
u = 0.07272 + 1.44133I
a = 0.081833 + 1.365030I
b = 0.512649 0.683277I
4.65094 2.50593I 0
u = 0.07272 1.44133I
a = 0.081833 1.365030I
b = 0.512649 + 0.683277I
4.65094 + 2.50593I 0
u = 0.13184 + 1.43845I
a = 1.17422 + 2.21897I
b = 0.018498 0.919588I
7.23839 + 1.71145I 0
u = 0.13184 1.43845I
a = 1.17422 2.21897I
b = 0.018498 + 0.919588I
7.23839 1.71145I 0
u = 0.31835 + 1.41515I
a = 1.08570 + 2.10712I
b = 0.728768 1.031050I
1.72641 + 11.46270I 0
u = 0.31835 1.41515I
a = 1.08570 2.10712I
b = 0.728768 + 1.031050I
1.72641 11.46270I 0
u = 0.34234 + 1.41472I
a = 0.781229 + 0.066281I
b = 0.870421 + 0.660227I
1.93901 + 10.83450I 0
u = 0.34234 1.41472I
a = 0.781229 0.066281I
b = 0.870421 0.660227I
1.93901 10.83450I 0
11
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.07678 + 1.47131I
a = 0.25274 + 1.75932I
b = 0.604385 0.938277I
5.41135 2.06230I 0
u = 0.07678 1.47131I
a = 0.25274 1.75932I
b = 0.604385 + 0.938277I
5.41135 + 2.06230I 0
u = 0.33452 + 1.43819I
a = 0.97375 2.16552I
b = 0.735962 + 1.048690I
0.7474 16.8065I 0
u = 0.33452 1.43819I
a = 0.97375 + 2.16552I
b = 0.735962 1.048690I
0.7474 + 16.8065I 0
u = 0.409816 + 0.325133I
a = 0.638033 0.588897I
b = 0.475752 + 0.559238I
1.05079 0.99662I 8.88984 + 5.17874I
u = 0.409816 0.325133I
a = 0.638033 + 0.588897I
b = 0.475752 0.559238I
1.05079 + 0.99662I 8.88984 5.17874I
u = 0.226772 + 0.416872I
a = 1.164160 + 0.133562I
b = 0.317397 + 0.274980I
0.50948 1.44830I 5.05239 + 5.14744I
u = 0.226772 0.416872I
a = 1.164160 0.133562I
b = 0.317397 0.274980I
0.50948 + 1.44830I 5.05239 5.14744I
u = 0.02923 + 1.54028I
a = 0.29040 1.47834I
b = 0.696662 + 0.798330I
2.96237 0.76259I 0
u = 0.02923 1.54028I
a = 0.29040 + 1.47834I
b = 0.696662 0.798330I
2.96237 + 0.76259I 0
12
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.367236 + 0.275592I
a = 0.364861 0.926737I
b = 0.540306 + 0.956806I
0.03876 3.21058I 4.83770 1.13154I
u = 0.367236 0.275592I
a = 0.364861 + 0.926737I
b = 0.540306 0.956806I
0.03876 + 3.21058I 4.83770 + 1.13154I
u = 0.06999 + 1.54596I
a = 0.36301 1.66914I
b = 0.688951 + 0.926678I
3.36051 + 6.09970I 0
u = 0.06999 1.54596I
a = 0.36301 + 1.66914I
b = 0.688951 0.926678I
3.36051 6.09970I 0
13
II. I
u
2
= h4b + 2a u + 2, 2a
2
2au + 5, u
2
+ 2i
(i) Arc colorings
a
5
=
0
u
a
8
=
1
0
a
9
=
1
2
a
4
=
u
u
a
10
=
1
0
a
6
=
u
u
a
12
=
a
1
2
a +
1
4
u
1
2
a
7
=
1
4
au +
1
2
a
1
4
1
2
a +
1
4
u +
1
2
a
3
=
1
4
au +
3
4
u
3
4
u + 1
a
2
=
3
4
au +
1
4
u
1
4
1
2
au
1
2
u +
1
2
a
11
=
1
2
a +
1
4
u
1
2
1
2
a +
1
4
u
1
2
a
1
=
1
4
au +
1
2
a
1
4
1
2
a +
1
4
u +
1
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4a 2u
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
11
c
12
(u
2
u + 1)
2
c
3
, c
6
, c
7
c
10
(u
2
+ u + 1)
2
c
4
, c
5
, c
8
c
9
(u
2
+ 2)
2
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
6
, c
7
, c
10
c
11
, c
12
(y
2
+ y + 1)
2
c
4
, c
5
, c
8
c
9
(y + 2)
4
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.414210I
a = 1.024940I
b = 0.500000 + 0.866025I
4.93480 + 4.05977I 6.92820I
u = 1.414210I
a = 2.43916I
b = 0.500000 0.866025I
4.93480 4.05977I 6.92820I
u = 1.414210I
a = 1.024940I
b = 0.500000 0.866025I
4.93480 4.05977I 6.92820I
u = 1.414210I
a = 2.43916I
b = 0.500000 + 0.866025I
4.93480 + 4.05977I 6.92820I
17
III. I
u
3
= h−1.28 × 10
4
a
4
u
2
3476a
3
u
2
+ · · · + 1.35 × 10
5
a 1.45 ×
10
5
, 2a
4
u
2
2a
3
u
2
+ · · · + 9a 7, u
3
u
2
+ 2u 1i
(i) Arc colorings
a
5
=
0
u
a
8
=
1
0
a
9
=
1
u
2
a
4
=
u
u
2
u + 1
a
10
=
u
2
+ 1
u
2
u + 1
a
6
=
1
0
a
12
=
a
0.0814401a
4
u
2
+ 0.0222011a
3
u
2
+ ··· 0.862157a + 0.926991
a
7
=
0.0462799a
4
u
2
+ 0.214908a
3
u
2
+ ··· 0.0906182a + 0.639309
0.156046a
4
u
2
0.152054a
3
u
2
+ ··· + 0.525174a 0.606940
a
3
=
0.0814401a
4
u
2
+ 0.0222011a
3
u
2
+ ··· + 0.137843a + 0.926991
0.0814401a
4
u
2
+ 0.0222011a
3
u
2
+ ··· 0.862157a + 0.926991
a
2
=
a
0.0814401a
4
u
2
+ 0.0222011a
3
u
2
+ ··· 0.862157a + 0.926991
a
11
=
0.0814401a
4
u
2
+ 0.0222011a
3
u
2
+ ··· + 0.137843a + 0.926991
0.0814401a
4
u
2
+ 0.0222011a
3
u
2
+ ··· 0.862157a + 0.926991
a
1
=
0.100799a
4
u
2
+ 0.139817a
3
u
2
+ ··· + 0.601377a + 0.480325
0.0848572a
4
u
2
+ 0.182661a
3
u
2
+ ··· 0.604583a + 0.979083
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
2
+ 4u 10
18
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
15
+ 6u
14
+ ··· + 2u 1
c
2
, c
6
, c
7
c
11
u
15
+ 3u
13
+ ··· u
2
+ 1
c
3
u
15
+ 3u
13
+ ··· + 12u + 5
c
4
, c
8
, c
9
(u
3
+ u
2
+ 2u + 1)
5
c
5
(u
3
u
2
+ 1)
5
c
10
, c
12
u
15
6u
14
+ ··· + 2u + 1
19
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
10
, c
12
y
15
+ 6y
14
+ ··· + 10y 1
c
2
, c
6
, c
7
c
11
y
15
+ 6y
14
+ ··· + 2y 1
c
3
y
15
+ 6y
14
+ ··· + 214y 25
c
4
, c
8
, c
9
(y
3
+ 3y
2
+ 2y 1)
5
c
5
(y
3
y
2
+ 2y 1)
5
20
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.215080 + 1.307140I
a = 0.408569 0.516978I
b = 0.736794 0.720585I
3.02413 2.82812I 2.49024 + 2.97945I
u = 0.215080 + 1.307140I
a = 0.232241 + 0.578143I
b = 0.683915 0.233449I
3.02413 2.82812I 2.49024 + 2.97945I
u = 0.215080 + 1.307140I
a = 0.33425 2.10096I
b = 0.502216 + 1.085210I
3.02413 2.82812I 2.49024 + 2.97945I
u = 0.215080 + 1.307140I
a = 1.72552 1.49654I
b = 0.692676 + 0.944809I
3.02413 2.82812I 2.49024 + 2.97945I
u = 0.215080 + 1.307140I
a = 0.55873 + 2.41178I
b = 0.243339 1.075990I
3.02413 2.82812I 2.49024 + 2.97945I
u = 0.215080 1.307140I
a = 0.408569 + 0.516978I
b = 0.736794 + 0.720585I
3.02413 + 2.82812I 2.49024 2.97945I
u = 0.215080 1.307140I
a = 0.232241 0.578143I
b = 0.683915 + 0.233449I
3.02413 + 2.82812I 2.49024 2.97945I
u = 0.215080 1.307140I
a = 0.33425 + 2.10096I
b = 0.502216 1.085210I
3.02413 + 2.82812I 2.49024 2.97945I
u = 0.215080 1.307140I
a = 1.72552 + 1.49654I
b = 0.692676 0.944809I
3.02413 + 2.82812I 2.49024 2.97945I
u = 0.215080 1.307140I
a = 0.55873 2.41178I
b = 0.243339 + 1.075990I
3.02413 + 2.82812I 2.49024 2.97945I
21
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.569840
a = 0.486937 + 1.149840I
b = 0.395722 1.025370I
1.11345 9.01950
u = 0.569840
a = 0.486937 1.149840I
b = 0.395722 + 1.025370I
1.11345 9.01950
u = 0.569840
a = 0.528223
b = 0.544964
1.11345 9.01950
u = 0.569840
a = 2.07577 + 1.38334I
b = 0.668204 + 0.836779I
1.11345 9.01950
u = 0.569840
a = 2.07577 1.38334I
b = 0.668204 0.836779I
1.11345 9.01950
22
IV. I
u
4
= hau + 9b + 4a + u + 4, 2a
2
+ au 3u + 5, u
2
+ 2i
(i) Arc colorings
a
5
=
0
u
a
8
=
1
0
a
9
=
1
2
a
4
=
u
u
a
10
=
1
0
a
6
=
u
u
a
12
=
a
1
9
au
4
9
a
1
9
u
4
9
a
7
=
1
9
au +
5
9
a +
7
18
u
4
9
1
9
au
4
9
a
1
9
u +
5
9
a
3
=
1
9
au +
5
9
a +
8
9
u +
5
9
1
9
au
4
9
a
10
9
u
4
9
a
2
=
5
9
au +
7
9
a +
4
9
u +
7
9
1
3
au
2
3
a
2
3
u
2
3
a
11
=
1
9
au +
5
9
a
1
9
u
4
9
1
9
au
4
9
a
1
9
u
4
9
a
1
=
1
9
au +
5
9
a +
7
18
u
4
9
1
9
au
4
9
a
1
9
u +
5
9
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
23
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
11
c
12
(u
2
u + 1)
2
c
3
, c
6
, c
7
c
10
(u
2
+ u + 1)
2
c
4
, c
5
, c
8
c
9
(u
2
+ 2)
2
24
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
6
, c
7
, c
10
c
11
, c
12
(y
2
+ y + 1)
2
c
4
, c
5
, c
8
c
9
(y + 2)
4
25
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.414210I
a = 0.61237 + 1.37850I
b = 0.500000 0.866025I
4.93480 0
u = 1.414210I
a = 0.61237 2.08560I
b = 0.500000 + 0.866025I
4.93480 0
u = 1.414210I
a = 0.61237 1.37850I
b = 0.500000 + 0.866025I
4.93480 0
u = 1.414210I
a = 0.61237 + 2.08560I
b = 0.500000 0.866025I
4.93480 0
26
V. I
v
1
= ha, b v 1, v
2
+ v + 1i
(i) Arc colorings
a
5
=
v
0
a
8
=
1
0
a
9
=
1
0
a
4
=
v
0
a
10
=
1
0
a
6
=
v
0
a
12
=
0
v + 1
a
7
=
1
v
a
3
=
1
1
a
2
=
v 2
1
a
11
=
v + 1
v + 1
a
1
=
1
v
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8v 2
27
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
6
c
7
, c
12
u
2
u + 1
c
2
, c
10
, c
11
u
2
+ u + 1
c
4
, c
5
, c
8
c
9
u
2
28
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
6
, c
7
, c
10
c
11
, c
12
y
2
+ y + 1
c
4
, c
5
, c
8
c
9
y
2
29
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 0.500000 + 0.866025I
a = 0
b = 0.500000 + 0.866025I
4.05977I 6.00000 + 6.92820I
v = 0.500000 0.866025I
a = 0
b = 0.500000 0.866025I
4.05977I 6.00000 6.92820I
30
VI. I
v
2
= ha, b
2
b + 1, v 1i
(i) Arc colorings
a
5
=
1
0
a
8
=
1
0
a
9
=
1
0
a
4
=
1
0
a
10
=
1
0
a
6
=
1
0
a
12
=
0
b
a
7
=
1
b + 1
a
3
=
b
b
a
2
=
0
b
a
11
=
b
b
a
1
=
1
b 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
31
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
6
c
7
, c
12
u
2
u + 1
c
2
, c
10
, c
11
u
2
+ u + 1
c
4
, c
5
, c
8
c
9
u
2
32
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
6
, c
7
, c
10
c
11
, c
12
y
2
+ y + 1
c
4
, c
5
, c
8
c
9
y
2
33
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
2
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 0.500000 + 0.866025I
0 0
v = 1.00000
a = 0
b = 0.500000 0.866025I
0 0
34
VII. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
2
u + 1)
6
)(u
15
+ 6u
14
+ ··· + 2u 1)(u
84
+ 43u
83
+ ··· + 80u + 9)
c
2
((u
2
u + 1)
4
)(u
2
+ u + 1)
2
(u
15
+ 3u
13
+ ··· u
2
+ 1)
· (u
84
3u
83
+ ··· 8u + 3)
c
3
((u
2
u + 1)
2
)(u
2
+ u + 1)
4
(u
15
+ 3u
13
+ ··· + 12u + 5)
· (u
84
+ 3u
83
+ ··· + 44270u + 12039)
c
4
, c
8
, c
9
u
4
(u
2
+ 2)
4
(u
3
+ u
2
+ 2u + 1)
5
(u
84
4u
83
+ ··· 96u + 16)
c
5
u
4
(u
2
+ 2)
4
(u
3
u
2
+ 1)
5
(u
84
+ 4u
83
+ ··· + 192992u + 185296)
c
6
((u
2
u + 1)
2
)(u
2
+ u + 1)
4
(u
15
+ 3u
13
+ ··· u
2
+ 1)
· (u
84
3u
83
+ ··· 8u + 3)
c
7
((u
2
u + 1)
2
)(u
2
+ u + 1)
4
(u
15
+ 3u
13
+ ··· u
2
+ 1)
· (u
84
+ 3u
83
+ ··· 22u + 3)
c
10
((u
2
+ u + 1)
6
)(u
15
6u
14
+ ··· + 2u + 1)(u
84
27u
83
+ ··· 80u + 9)
c
11
((u
2
u + 1)
4
)(u
2
+ u + 1)
2
(u
15
+ 3u
13
+ ··· u
2
+ 1)
· (u
84
+ 3u
83
+ ··· 22u + 3)
c
12
((u
2
u + 1)
6
)(u
15
6u
14
+ ··· + 2u + 1)(u
84
27u
83
+ ··· 80u + 9)
35
VIII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y
2
+ y + 1)
6
)(y
15
+ 6y
14
+ ··· + 10y 1)
· (y
84
+ 3y
83
+ ··· + 1988y + 81)
c
2
, c
6
((y
2
+ y + 1)
6
)(y
15
+ 6y
14
+ ··· + 2y 1)(y
84
+ 43y
83
+ ··· + 80y + 9)
c
3
((y
2
+ y + 1)
6
)(y
15
+ 6y
14
+ ··· + 214y 25)
· (y
84
37y
83
+ ··· + 1982120948y + 144937521)
c
4
, c
8
, c
9
y
4
(y + 2)
8
(y
3
+ 3y
2
+ 2y 1)
5
(y
84
+ 76y
83
+ ··· + 9728y
2
+ 256)
c
5
y
4
(y + 2)
8
(y
3
y
2
+ 2y 1)
5
· (y
84
4y
83
+ ··· + 562686205952y + 34334607616)
c
7
, c
11
((y
2
+ y + 1)
6
)(y
15
+ 6y
14
+ ··· + 2y 1)(y
84
+ 27y
83
+ ··· + 80y + 9)
c
10
, c
12
((y
2
+ y + 1)
6
)(y
15
+ 6y
14
+ ··· + 10y 1)
· (y
84
+ 67y
83
+ ··· + 35684y + 81)
36