12a
0220
(K12a
0220
)
A knot diagram
1
Linearized knot diagam
3 6 7 9 10 2 12 1 11 5 4 8
Solving Sequence
7,12
8 1
4,9
5 3 2 6 11 10
c
7
c
12
c
8
c
4
c
3
c
1
c
6
c
11
c
10
c
2
, c
5
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h−1.49096 × 10
181
u
106
+ 9.13411 × 10
180
u
105
+ ··· + 5.06627 × 10
181
b 7.23078 × 10
182
,
6.06637 × 10
182
u
106
1.74049 × 10
183
u
105
+ ··· + 1.31723 × 10
183
a 2.71243 × 10
184
,
u
107
3u
106
+ ··· 111u 13i
I
u
2
= hb
2
b + 1, a
4
2a
2
+ 2, u + 1i
I
u
3
= hb
2
+ b + 1, a
3
, u 1i
* 3 irreducible components of dim
C
= 0, with total 121 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−1.49 × 10
181
u
106
+ 9.13 × 10
180
u
105
+ · · · + 5.07 × 10
181
b 7.23 ×
10
182
, 6.07 × 10
182
u
106
1.74 × 10
183
u
105
+ · · · + 1.32 × 10
183
a 2.71 ×
10
184
, u
107
3u
106
+ · · · 111u 13i
(i) Arc colorings
a
7
=
1
0
a
12
=
0
u
a
8
=
1
u
2
a
1
=
u
u
3
+ u
a
4
=
0.460540u
106
+ 1.32132u
105
+ ··· + 177.538u + 20.5919
0.294291u
106
0.180293u
105
+ ··· + 132.884u + 14.2724
a
9
=
u
2
+ 1
u
4
+ 2u
2
a
5
=
0.339961u
106
+ 1.59337u
105
+ ··· + 324.599u + 34.4376
0.183891u
106
0.141636u
105
+ ··· + 110.762u + 12.7655
a
3
=
0.166249u
106
+ 1.14103u
105
+ ··· + 310.421u + 34.8643
0.294291u
106
0.180293u
105
+ ··· + 132.884u + 14.2724
a
2
=
0.813218u
106
+ 2.47693u
105
+ ··· + 392.711u + 41.8323
0.137167u
106
+ 0.176247u
105
+ ··· 14.8599u 0.292318
a
6
=
0.455592u
106
2.01489u
105
+ ··· + 4.63244u + 13.1807
0.102062u
106
+ 0.00933752u
105
+ ··· 49.6066u 10.5866
a
11
=
0.832717u
106
+ 1.95875u
105
+ ··· + 267.318u + 30.0119
0.325817u
106
+ 0.776598u
105
+ ··· + 23.5117u + 1.24472
a
10
=
0.816162u
106
+ 2.12713u
105
+ ··· + 317.788u + 27.2416
0.127653u
106
0.129996u
105
+ ··· 43.6773u 7.17967
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.703236u
106
+ 1.11367u
105
+ ··· + 8.19553u + 10.4291
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
107
+ 54u
106
+ ··· 8u 1
c
2
, c
6
u
107
2u
106
+ ··· + 2u 1
c
3
u
107
+ 2u
106
+ ··· 188610u 36209
c
4
u
107
+ u
106
+ ··· + 3876u + 3764
c
5
, c
10
u
107
u
106
+ ··· + 4u + 4
c
7
, c
8
, c
12
u
107
+ 3u
106
+ ··· 111u + 13
c
9
u
107
51u
106
+ ··· 80u + 16
c
11
u
107
5u
106
+ ··· 692004u + 563884
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
107
+ 6y
106
+ ··· + 40y 1
c
2
, c
6
y
107
+ 54y
106
+ ··· 8y 1
c
3
y
107
42y
106
+ ··· + 2264493656y 1311091681
c
4
y
107
21y
106
+ ··· + 424757360y 14167696
c
5
, c
10
y
107
+ 51y
106
+ ··· 80y 16
c
7
, c
8
, c
12
y
107
103y
106
+ ··· 9207y 169
c
9
y
107
+ 15y
106
+ ··· 2304y 256
c
11
y
107
+ 39y
106
+ ··· 10755598905296y 317965165456
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.904262 + 0.431584I
a = 0.133296 0.339278I
b = 0.530938 0.189035I
1.99885 + 5.17052I 0
u = 0.904262 0.431584I
a = 0.133296 + 0.339278I
b = 0.530938 + 0.189035I
1.99885 5.17052I 0
u = 0.787760 + 0.643206I
a = 0.871626 + 0.708841I
b = 1.096750 + 0.335060I
4.40852 + 2.42869I 0
u = 0.787760 0.643206I
a = 0.871626 0.708841I
b = 1.096750 0.335060I
4.40852 2.42869I 0
u = 0.956946 + 0.360565I
a = 0.597535 + 0.227282I
b = 0.958606 + 0.767416I
0.373093 0.971380I 0
u = 0.956946 0.360565I
a = 0.597535 0.227282I
b = 0.958606 0.767416I
0.373093 + 0.971380I 0
u = 0.358282 + 0.896448I
a = 1.10747 + 1.21913I
b = 1.41980 0.65124I
1.00079 + 12.66400I 0
u = 0.358282 0.896448I
a = 1.10747 1.21913I
b = 1.41980 + 0.65124I
1.00079 12.66400I 0
u = 0.992483 + 0.309368I
a = 0.160962 0.486626I
b = 0.269567 0.291149I
3.00656 1.10116I 0
u = 0.992483 0.309368I
a = 0.160962 + 0.486626I
b = 0.269567 + 0.291149I
3.00656 + 1.10116I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.608114 + 0.728544I
a = 0.691648 + 0.449361I
b = 1.128540 0.315477I
2.81110 + 0.44680I 0
u = 0.608114 0.728544I
a = 0.691648 0.449361I
b = 1.128540 + 0.315477I
2.81110 0.44680I 0
u = 1.033090 + 0.207124I
a = 0.748487 0.391269I
b = 0.001488 0.410585I
1.89971 0.44446I 0
u = 1.033090 0.207124I
a = 0.748487 + 0.391269I
b = 0.001488 + 0.410585I
1.89971 + 0.44446I 0
u = 0.391004 + 0.857866I
a = 0.99548 + 1.11660I
b = 1.36178 0.60152I
3.15539 7.60366I 0
u = 0.391004 0.857866I
a = 0.99548 1.11660I
b = 1.36178 + 0.60152I
3.15539 + 7.60366I 0
u = 0.541436 + 0.770509I
a = 0.741344 + 1.076260I
b = 0.858958 0.011904I
2.59503 + 4.68959I 0
u = 0.541436 0.770509I
a = 0.741344 1.076260I
b = 0.858958 + 0.011904I
2.59503 4.68959I 0
u = 0.606025 + 0.712743I
a = 0.766219 + 0.966722I
b = 0.916895 + 0.108302I
4.40673 + 0.22528I 0
u = 0.606025 0.712743I
a = 0.766219 0.966722I
b = 0.916895 0.108302I
4.40673 0.22528I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.023130 + 0.308756I
a = 0.835122 + 0.060413I
b = 0.362952 0.673846I
1.30429 + 3.26731I 0
u = 1.023130 0.308756I
a = 0.835122 0.060413I
b = 0.362952 + 0.673846I
1.30429 3.26731I 0
u = 0.517016 + 0.772169I
a = 0.775725 + 0.721111I
b = 1.220000 0.429494I
4.10761 5.28481I 0
u = 0.517016 0.772169I
a = 0.775725 0.721111I
b = 1.220000 + 0.429494I
4.10761 + 5.28481I 0
u = 0.873419 + 0.646269I
a = 0.961755 + 0.599798I
b = 1.201530 + 0.414908I
2.58534 7.32575I 0
u = 0.873419 0.646269I
a = 0.961755 0.599798I
b = 1.201530 0.414908I
2.58534 + 7.32575I 0
u = 1.073390 + 0.173489I
a = 1.185970 0.495544I
b = 0.025415 0.404365I
0.62750 3.83015I 0
u = 1.073390 0.173489I
a = 1.185970 + 0.495544I
b = 0.025415 + 0.404365I
0.62750 + 3.83015I 0
u = 0.347205 + 0.789149I
a = 0.98779 1.36315I
b = 0.998853 + 0.689661I
1.55865 + 7.81274I 0
u = 0.347205 0.789149I
a = 0.98779 + 1.36315I
b = 0.998853 0.689661I
1.55865 7.81274I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.697681 + 0.486866I
a = 1.017260 0.382052I
b = 0.787593 0.084239I
0.26585 3.31149I 0
u = 0.697681 0.486866I
a = 1.017260 + 0.382052I
b = 0.787593 + 0.084239I
0.26585 + 3.31149I 0
u = 0.305416 + 0.776614I
a = 0.73060 + 1.37269I
b = 1.24517 0.72111I
1.49738 + 5.20503I 0
u = 0.305416 0.776614I
a = 0.73060 1.37269I
b = 1.24517 + 0.72111I
1.49738 5.20503I 0
u = 0.366231 + 0.724436I
a = 0.89880 1.21010I
b = 0.918174 + 0.589822I
0.58468 2.93122I 0
u = 0.366231 0.724436I
a = 0.89880 + 1.21010I
b = 0.918174 0.589822I
0.58468 + 2.93122I 0
u = 1.193830 + 0.133951I
a = 1.186440 + 0.254501I
b = 0.478845 0.410517I
1.09290 + 3.87383I 0
u = 1.193830 0.133951I
a = 1.186440 0.254501I
b = 0.478845 + 0.410517I
1.09290 3.87383I 0
u = 1.201360 + 0.183444I
a = 0.419710 0.338240I
b = 0.79913 + 1.21442I
0.18627 + 3.28365I 0
u = 1.201360 0.183444I
a = 0.419710 + 0.338240I
b = 0.79913 1.21442I
0.18627 3.28365I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.24303
a = 0.920747
b = 0.643030
2.16232 0
u = 0.222910 + 0.706813I
a = 0.57898 1.45300I
b = 0.731318 + 0.783769I
3.66702 + 0.52581I 4.89543 0.81246I
u = 0.222910 0.706813I
a = 0.57898 + 1.45300I
b = 0.731318 0.783769I
3.66702 0.52581I 4.89543 + 0.81246I
u = 0.504839 + 0.540212I
a = 0.851823 0.684157I
b = 0.771656 + 0.223252I
1.33042 1.16536I 4.57238 + 3.59666I
u = 0.504839 0.540212I
a = 0.851823 + 0.684157I
b = 0.771656 0.223252I
1.33042 + 1.16536I 4.57238 3.59666I
u = 1.245520 + 0.201441I
a = 0.458006 + 0.563615I
b = 0.050412 1.311980I
0.58850 1.75903I 0
u = 1.245520 0.201441I
a = 0.458006 0.563615I
b = 0.050412 + 1.311980I
0.58850 + 1.75903I 0
u = 1.346650 + 0.022218I
a = 0.127155 0.744802I
b = 0.49820 + 1.55717I
3.79047 1.76476I 0
u = 1.346650 0.022218I
a = 0.127155 + 0.744802I
b = 0.49820 1.55717I
3.79047 + 1.76476I 0
u = 1.349610 + 0.062394I
a = 1.345650 + 0.408342I
b = 1.030110 + 0.398339I
1.64321 0.63614I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.349610 0.062394I
a = 1.345650 0.408342I
b = 1.030110 0.398339I
1.64321 + 0.63614I 0
u = 1.356410 + 0.112287I
a = 0.202197 + 0.820758I
b = 0.17434 1.59862I
3.53567 + 3.73820I 0
u = 1.356410 0.112287I
a = 0.202197 0.820758I
b = 0.17434 + 1.59862I
3.53567 3.73820I 0
u = 1.358470 + 0.143026I
a = 1.353580 0.228884I
b = 1.160700 + 0.526570I
1.26765 + 7.94095I 0
u = 1.358470 0.143026I
a = 1.353580 + 0.228884I
b = 1.160700 0.526570I
1.26765 7.94095I 0
u = 1.368360 + 0.085834I
a = 0.290701 0.765642I
b = 0.64968 + 1.59002I
2.02551 3.00487I 0
u = 1.368360 0.085834I
a = 0.290701 + 0.765642I
b = 0.64968 1.59002I
2.02551 + 3.00487I 0
u = 1.379890 + 0.160353I
a = 0.317648 + 0.896210I
b = 0.05306 1.66215I
1.56942 8.60645I 0
u = 1.379890 0.160353I
a = 0.317648 0.896210I
b = 0.05306 + 1.66215I
1.56942 + 8.60645I 0
u = 1.390970 + 0.096096I
a = 1.103970 + 0.103885I
b = 1.152920 + 0.397138I
4.97509 3.82300I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.390970 0.096096I
a = 1.103970 0.103885I
b = 1.152920 0.397138I
4.97509 + 3.82300I 0
u = 0.037503 + 0.596397I
a = 0.36414 1.92620I
b = 0.261674 + 1.022480I
4.52566 1.15109I 6.23436 + 0.38594I
u = 0.037503 0.596397I
a = 0.36414 + 1.92620I
b = 0.261674 1.022480I
4.52566 + 1.15109I 6.23436 0.38594I
u = 1.40667 + 0.26184I
a = 0.485247 + 0.970070I
b = 1.141110 0.816619I
1.56131 4.01030I 0
u = 1.40667 0.26184I
a = 0.485247 0.970070I
b = 1.141110 + 0.816619I
1.56131 + 4.01030I 0
u = 0.298161 + 0.443295I
a = 0.549122 + 0.963108I
b = 0.444626 + 0.356044I
0.15371 1.58994I 1.42624 + 1.98288I
u = 0.298161 0.443295I
a = 0.549122 0.963108I
b = 0.444626 0.356044I
0.15371 + 1.58994I 1.42624 1.98288I
u = 1.46362 + 0.17385I
a = 0.304404 1.032320I
b = 0.846992 + 0.221001I
6.17519 0.76182I 0
u = 1.46362 0.17385I
a = 0.304404 + 1.032320I
b = 0.846992 0.221001I
6.17519 + 0.76182I 0
u = 0.155990 + 0.497529I
a = 1.04483 2.35071I
b = 0.015047 + 1.085040I
3.36815 + 6.26844I 3.96391 7.68382I
11
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.155990 0.497529I
a = 1.04483 + 2.35071I
b = 0.015047 1.085040I
3.36815 6.26844I 3.96391 + 7.68382I
u = 1.44935 + 0.30104I
a = 0.526429 1.065710I
b = 1.52911 + 0.71038I
4.15695 9.12120I 0
u = 1.44935 0.30104I
a = 0.526429 + 1.065710I
b = 1.52911 0.71038I
4.15695 + 9.12120I 0
u = 1.46542 + 0.27690I
a = 0.254920 + 1.037850I
b = 1.32007 0.86889I
6.50073 + 6.60004I 0
u = 1.46542 0.27690I
a = 0.254920 1.037850I
b = 1.32007 + 0.86889I
6.50073 6.60004I 0
u = 1.46386 + 0.30484I
a = 0.263373 + 1.147230I
b = 1.31153 0.95461I
4.27302 11.79580I 0
u = 1.46386 0.30484I
a = 0.263373 1.147230I
b = 1.31153 + 0.95461I
4.27302 + 11.79580I 0
u = 1.48495 + 0.19479I
a = 0.167816 + 0.722945I
b = 1.38966 0.61548I
7.76705 + 3.90228I 0
u = 1.48495 0.19479I
a = 0.167816 0.722945I
b = 1.38966 + 0.61548I
7.76705 3.90228I 0
u = 1.49176 + 0.14550I
a = 0.134205 + 0.537263I
b = 1.41496 0.46095I
6.68330 + 1.19848I 0
12
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.49176 0.14550I
a = 0.134205 0.537263I
b = 1.41496 + 0.46095I
6.68330 1.19848I 0
u = 0.066760 + 0.486078I
a = 0.41695 + 2.46615I
b = 0.881052 0.937770I
3.30433 5.76662I 3.79923 + 6.91273I
u = 0.066760 0.486078I
a = 0.41695 2.46615I
b = 0.881052 + 0.937770I
3.30433 + 5.76662I 3.79923 6.91273I
u = 1.48454 + 0.34898I
a = 0.254201 1.213360I
b = 1.65526 + 0.76856I
6.9227 17.1759I 0
u = 1.48454 0.34898I
a = 0.254201 + 1.213360I
b = 1.65526 0.76856I
6.9227 + 17.1759I 0
u = 1.49146 + 0.32588I
a = 0.272333 1.094210I
b = 1.64360 + 0.71264I
9.2253 + 11.9036I 0
u = 1.49146 0.32588I
a = 0.272333 + 1.094210I
b = 1.64360 0.71264I
9.2253 11.9036I 0
u = 0.066503 + 0.460813I
a = 1.13702 1.73349I
b = 0.034938 + 0.934134I
0.95866 1.83427I 0.73406 + 3.89858I
u = 0.066503 0.460813I
a = 1.13702 + 1.73349I
b = 0.034938 0.934134I
0.95866 + 1.83427I 0.73406 3.89858I
u = 1.52227 + 0.25706I
a = 0.251276 0.717849I
b = 1.62467 + 0.53247I
10.77400 + 9.01109I 0
13
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.52227 0.25706I
a = 0.251276 + 0.717849I
b = 1.62467 0.53247I
10.77400 9.01109I 0
u = 1.53098 + 0.21479I
a = 0.265871 0.505711I
b = 1.58794 + 0.43363I
9.84860 3.77356I 0
u = 1.53098 0.21479I
a = 0.265871 + 0.505711I
b = 1.58794 0.43363I
9.84860 + 3.77356I 0
u = 1.52612 + 0.24737I
a = 0.153500 1.100690I
b = 0.833157 + 0.473629I
9.36969 8.34998I 0
u = 1.52612 0.24737I
a = 0.153500 + 1.100690I
b = 0.833157 0.473629I
9.36969 + 8.34998I 0
u = 1.53189 + 0.21291I
a = 0.156064 1.042910I
b = 0.907267 + 0.417953I
11.43450 + 3.06093I 0
u = 1.53189 0.21291I
a = 0.156064 + 1.042910I
b = 0.907267 0.417953I
11.43450 3.06093I 0
u = 1.55684 + 0.12305I
a = 0.148490 0.836226I
b = 1.116250 + 0.286900I
12.31450 + 0.01828I 0
u = 1.55684 0.12305I
a = 0.148490 + 0.836226I
b = 1.116250 0.286900I
12.31450 0.01828I 0
u = 1.56528 + 0.07740I
a = 0.149063 0.704571I
b = 1.211780 + 0.210713I
11.02690 + 5.25826I 0
14
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.56528 0.07740I
a = 0.149063 + 0.704571I
b = 1.211780 0.210713I
11.02690 5.25826I 0
u = 0.154957 + 0.386807I
a = 0.836798 + 0.702949I
b = 0.264901 + 0.471924I
0.14462 1.60637I 1.48281 + 3.72848I
u = 0.154957 0.386807I
a = 0.836798 0.702949I
b = 0.264901 0.471924I
0.14462 + 1.60637I 1.48281 3.72848I
u = 0.156750 + 0.282652I
a = 2.02349 + 1.65973I
b = 0.732640 0.821272I
0.05214 + 2.40475I 0.47032 3.52067I
u = 0.156750 0.282652I
a = 2.02349 1.65973I
b = 0.732640 + 0.821272I
0.05214 2.40475I 0.47032 + 3.52067I
u = 0.048155 + 0.266320I
a = 1.69653 + 4.39859I
b = 0.672555 0.967240I
2.63765 + 1.71529I 3.42382 0.87900I
u = 0.048155 0.266320I
a = 1.69653 4.39859I
b = 0.672555 + 0.967240I
2.63765 1.71529I 3.42382 + 0.87900I
15
II. I
u
2
= hb
2
b + 1, a
4
2a
2
+ 2, u + 1i
(i) Arc colorings
a
7
=
1
0
a
12
=
0
1
a
8
=
1
1
a
1
=
1
0
a
4
=
a
b
a
9
=
0
1
a
5
=
a
b a
a
3
=
b + a
b
a
2
=
ba + b
b 1
a
6
=
a
b
a
11
=
a
2
ba 1
a
10
=
2a
2
2
a
3
b a
2
+ 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4a
2
+ 4b
16
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u
2
u + 1)
4
c
3
, c
6
(u
2
+ u + 1)
4
c
4
, c
11
(u
4
2u
2
+ 2)
2
c
5
, c
10
(u
4
+ 2u
2
+ 2)
2
c
7
, c
8
(u + 1)
8
c
9
(u
2
+ 2u + 2)
4
c
12
(u 1)
8
17
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
6
(y
2
+ y + 1)
4
c
4
, c
11
(y
2
2y + 2)
4
c
5
, c
10
(y
2
+ 2y + 2)
4
c
7
, c
8
, c
12
(y 1)
8
c
9
(y
2
+ 4)
4
18
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.098680 + 0.455090I
b = 0.500000 + 0.866025I
0.82247 + 1.63398I 2.00000 0.53590I
u = 1.00000
a = 1.098680 + 0.455090I
b = 0.500000 0.866025I
0.82247 + 5.69375I 2.00000 7.46410I
u = 1.00000
a = 1.098680 0.455090I
b = 0.500000 + 0.866025I
0.82247 5.69375I 2.00000 + 7.46410I
u = 1.00000
a = 1.098680 0.455090I
b = 0.500000 0.866025I
0.82247 1.63398I 2.00000 + 0.53590I
u = 1.00000
a = 1.098680 + 0.455090I
b = 0.500000 + 0.866025I
0.82247 5.69375I 2.00000 + 7.46410I
u = 1.00000
a = 1.098680 + 0.455090I
b = 0.500000 0.866025I
0.82247 1.63398I 2.00000 + 0.53590I
u = 1.00000
a = 1.098680 0.455090I
b = 0.500000 + 0.866025I
0.82247 + 1.63398I 2.00000 0.53590I
u = 1.00000
a = 1.098680 0.455090I
b = 0.500000 0.866025I
0.82247 + 5.69375I 2.00000 7.46410I
19
III. I
u
3
= hb
2
+ b + 1, a
3
, u 1i
(i) Arc colorings
a
7
=
1
0
a
12
=
0
1
a
8
=
1
1
a
1
=
1
0
a
4
=
a
b
a
9
=
0
1
a
5
=
a
b a
a
3
=
b + a
b
a
2
=
ba + b
b + 1
a
6
=
a
b
a
11
=
a
2
ba + 1
a
10
=
0
a
2
+ 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2a
2
4b 8
20
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
6
(u
2
u + 1)
3
c
2
(u
2
+ u + 1)
3
c
4
, c
5
, c
9
c
10
, c
11
u
6
c
7
, c
8
(u 1)
6
c
12
(u + 1)
6
21
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
6
(y
2
+ y + 1)
3
c
4
, c
5
, c
9
c
10
, c
11
y
6
c
7
, c
8
, c
12
(y 1)
6
22
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0
b = 0.500000 + 0.866025I
1.64493 + 2.02988I 6.00000 3.46410I
u = 1.00000
a = 0
b = 0.500000 + 0.866025I
1.64493 + 2.02988I 6.00000 3.46410I
u = 1.00000
a = 0
b = 0.500000 + 0.866025I
1.64493 + 2.02988I 6.00000 3.46410I
u = 1.00000
a = 0
b = 0.500000 0.866025I
1.64493 2.02988I 6.00000 + 3.46410I
u = 1.00000
a = 0
b = 0.500000 0.866025I
1.64493 2.02988I 6.00000 + 3.46410I
u = 1.00000
a = 0
b = 0.500000 0.866025I
1.64493 2.02988I 6.00000 + 3.46410I
23
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
2
u + 1)
7
)(u
107
+ 54u
106
+ ··· 8u 1)
c
2
((u
2
u + 1)
4
)(u
2
+ u + 1)
3
(u
107
2u
106
+ ··· + 2u 1)
c
3
((u
2
u + 1)
3
)(u
2
+ u + 1)
4
(u
107
+ 2u
106
+ ··· 188610u 36209)
c
4
u
6
(u
4
2u
2
+ 2)
2
(u
107
+ u
106
+ ··· + 3876u + 3764)
c
5
, c
10
u
6
(u
4
+ 2u
2
+ 2)
2
(u
107
u
106
+ ··· + 4u + 4)
c
6
((u
2
u + 1)
3
)(u
2
+ u + 1)
4
(u
107
2u
106
+ ··· + 2u 1)
c
7
, c
8
((u 1)
6
)(u + 1)
8
(u
107
+ 3u
106
+ ··· 111u + 13)
c
9
u
6
(u
2
+ 2u + 2)
4
(u
107
51u
106
+ ··· 80u + 16)
c
11
u
6
(u
4
2u
2
+ 2)
2
(u
107
5u
106
+ ··· 692004u + 563884)
c
12
((u 1)
8
)(u + 1)
6
(u
107
+ 3u
106
+ ··· 111u + 13)
24
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y
2
+ y + 1)
7
)(y
107
+ 6y
106
+ ··· + 40y 1)
c
2
, c
6
((y
2
+ y + 1)
7
)(y
107
+ 54y
106
+ ··· 8y 1)
c
3
((y
2
+ y + 1)
7
)(y
107
42y
106
+ ··· + 2.26449 × 10
9
y 1.31109 × 10
9
)
c
4
y
6
(y
2
2y + 2)
4
(y
107
21y
106
+ ··· + 4.24757 × 10
8
y 1.41677 × 10
7
)
c
5
, c
10
y
6
(y
2
+ 2y + 2)
4
(y
107
+ 51y
106
+ ··· 80y 16)
c
7
, c
8
, c
12
((y 1)
14
)(y
107
103y
106
+ ··· 9207y 169)
c
9
y
6
(y
2
+ 4)
4
(y
107
+ 15y
106
+ ··· 2304y 256)
c
11
y
6
(y
2
2y + 2)
4
· (y
107
+ 39y
106
+ ··· 10755598905296y 317965165456)
25