12a
0222
(K12a
0222
)
A knot diagram
1
Linearized knot diagam
3 6 7 9 11 2 10 5 12 1 4 8
Solving Sequence
2,6
3 7
4,10
8 1 11 5 12 9
c
2
c
6
c
3
c
7
c
1
c
10
c
5
c
12
c
9
c
4
, c
8
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h2u
36
+ u
35
+ ··· + b 9, 3u
36
3u
35
+ ··· + a + 1, u
37
2u
36
+ ··· + 2u 1i
* 1 irreducible components of dim
C
= 0, with total 37 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h2u
36
+u
35
+· · ·+b9, 3u
36
3u
35
+· · ·+a+1, u
37
2u
36
+· · ·+2u1i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
u
2
a
7
=
u
u
a
4
=
u
4
+ u
2
+ 1
u
4
a
10
=
3u
36
+ 3u
35
+ ··· + 5u 1
2u
36
u
35
+ ··· + u + 9
a
8
=
4u
35
+ 10u
34
+ ··· 11u + 11
6u
36
+ 17u
35
+ ··· + 18u 12
a
1
=
u
2
+ 1
u
4
a
11
=
6u
36
10u
35
+ ··· 12u + 1
5u
36
14u
35
+ ··· 14u + 15
a
5
=
3u
36
+ 2u
35
+ ··· + 9u + 1
11u
36
15u
35
+ ··· 6u 8
a
12
=
2u
36
3u
35
+ ··· 2u + 1
3u
36
7u
35
+ ··· 6u + 10
a
9
=
2u
36
u
35
+ ··· + u 15
5u
36
12u
35
+ ··· 11u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 50u
36
53u
35
+513u
34
472u
33
+2604u
32
2103u
31
+8527u
30
6002u
29
+19933u
28
12090u
27
+34843u
26
17999u
25
+46330u
24
20392u
23
+46429u
22
18028u
21
+33354u
20
12865u
19
+ 14474u
18
7621u
17
+ 482u
16
3677u
15
3764u
14
1370u
13
1746u
12
705u
11
+628u
10
954u
9
+992u
8
1056u
7
+361u
6
706u
5
43u
4
276u
3
89u
2
49u37
2
(iv) u-Polynomials at the component
3
Crossings u-Polynomials at each crossing
c
1
u
37
20u
36
+ ··· 10u + 1
c
2
u
37
2u
36
+ ··· + 2u 1
c
3
u
37
+ 2u
36
+ ··· + 8u 1
c
4
u
37
+ u
36
+ ··· u 1
c
5
u
37
7u
35
+ ··· 2u 1
c
6
u
37
+ 2u
36
+ ··· + 2u + 1
c
7
u
37
3u
36
+ ··· 7u 1
c
8
u
37
u
36
+ ··· u + 1
c
9
u
37
+ 20u
36
+ ··· + 23u + 1
c
10
u
37
17u
36
+ ··· + 23u 1
c
11
u
37
4u
36
+ ··· 2u + 1
c
12
u
37
+ 7u
36
+ ··· + 3u 1
4
5
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
37
+ 4y
36
+ ··· 10y 1
c
2
, c
6
y
37
+ 20y
36
+ ··· 10y 1
c
3
y
37
6y
36
+ ··· + 8y 1
c
4
, c
8
y
37
+ 21y
36
+ ··· 29y 1
c
5
y
37
14y
36
+ ··· 12y 1
c
7
y
37
17y
36
+ ··· + 17y 1
c
9
y
37
+ 4y
36
+ ··· + 13y 1
c
10
y
37
+ 7y
36
+ ··· + 35y 1
c
11
y
37
+ 4y
36
+ ··· + 24y 1
c
12
y
37
17y
36
+ ··· + 17y 1
6
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.149884 + 0.975736I
a = 0.898991 + 0.581003I
b = 1.59695 + 0.70098I
1.70560 + 1.29082I 4.10550 4.13500I
u = 0.149884 0.975736I
a = 0.898991 0.581003I
b = 1.59695 0.70098I
1.70560 1.29082I 4.10550 + 4.13500I
u = 0.600365 + 0.704581I
a = 0.757124 + 0.641967I
b = 0.204265 + 0.747533I
0.834960 + 0.285553I 0.434596 + 0.220919I
u = 0.600365 0.704581I
a = 0.757124 0.641967I
b = 0.204265 0.747533I
0.834960 0.285553I 0.434596 0.220919I
u = 0.479565 + 0.990246I
a = 0.864069 + 0.151474I
b = 0.0946240 + 0.0662065I
0.363148 0.677922I 0.56726 + 2.15135I
u = 0.479565 0.990246I
a = 0.864069 0.151474I
b = 0.0946240 0.0662065I
0.363148 + 0.677922I 0.56726 2.15135I
u = 0.532442 + 0.982690I
a = 0.780782 0.630467I
b = 0.290116 1.327480I
0.06388 4.77621I 1.68090 + 5.53681I
u = 0.532442 0.982690I
a = 0.780782 + 0.630467I
b = 0.290116 + 1.327480I
0.06388 + 4.77621I 1.68090 5.53681I
u = 0.204733 + 0.857295I
a = 1.38015 + 0.70474I
b = 0.0824504 + 0.0328733I
1.37034 3.02368I 8.36272 + 7.29707I
u = 0.204733 0.857295I
a = 1.38015 0.70474I
b = 0.0824504 0.0328733I
1.37034 + 3.02368I 8.36272 7.29707I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.459092 + 1.035940I
a = 0.59291 + 1.57136I
b = 0.33683 + 2.07268I
2.24562 1.84888I 1.43556 + 1.62892I
u = 0.459092 1.035940I
a = 0.59291 1.57136I
b = 0.33683 2.07268I
2.24562 + 1.84888I 1.43556 1.62892I
u = 0.477509 + 1.033510I
a = 1.05702 + 2.06127I
b = 0.71022 + 2.96225I
2.36710 + 8.22059I 0.94025 9.93315I
u = 0.477509 1.033510I
a = 1.05702 2.06127I
b = 0.71022 2.96225I
2.36710 8.22059I 0.94025 + 9.93315I
u = 0.834958
a = 2.24679
b = 0.265283
3.19671 32.4830
u = 0.325483 + 1.152650I
a = 0.15406 1.63598I
b = 0.69492 2.01501I
4.68461 1.11526I 3.13705 + 0.65063I
u = 0.325483 1.152650I
a = 0.15406 + 1.63598I
b = 0.69492 + 2.01501I
4.68461 + 1.11526I 3.13705 0.65063I
u = 0.500299 + 0.608166I
a = 0.471582 0.257960I
b = 0.12074 1.48951I
0.79654 3.35515I 4.80142 + 6.29346I
u = 0.500299 0.608166I
a = 0.471582 + 0.257960I
b = 0.12074 + 1.48951I
0.79654 + 3.35515I 4.80142 6.29346I
u = 0.743965 + 0.168516I
a = 1.330750 + 0.223235I
b = 0.105331 + 0.292541I
2.40521 + 5.56732I 3.26355 5.71144I
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.743965 0.168516I
a = 1.330750 0.223235I
b = 0.105331 0.292541I
2.40521 5.56732I 3.26355 + 5.71144I
u = 0.314889 + 1.198120I
a = 0.053522 + 0.871053I
b = 0.06739 + 1.50640I
1.73005 + 1.92880I 3.35941 1.64027I
u = 0.314889 1.198120I
a = 0.053522 0.871053I
b = 0.06739 1.50640I
1.73005 1.92880I 3.35941 + 1.64027I
u = 0.714811 + 0.247691I
a = 2.06738 0.58596I
b = 0.967121 0.060412I
0.67794 4.35069I 2.48170 + 5.54176I
u = 0.714811 0.247691I
a = 2.06738 + 0.58596I
b = 0.967121 + 0.060412I
0.67794 + 4.35069I 2.48170 5.54176I
u = 0.533806 + 1.137330I
a = 0.38517 2.11869I
b = 0.58596 2.85980I
3.23500 + 9.09894I 0. 9.05167I
u = 0.533806 1.137330I
a = 0.38517 + 2.11869I
b = 0.58596 + 2.85980I
3.23500 9.09894I 0. + 9.05167I
u = 0.521067 + 1.151720I
a = 0.140342 + 1.155190I
b = 0.15772 + 1.99777I
0.38678 10.27070I 0. + 8.69635I
u = 0.521067 1.151720I
a = 0.140342 1.155190I
b = 0.15772 1.99777I
0.38678 + 10.27070I 0. 8.69635I
u = 0.897315 + 0.915050I
a = 0.059712 0.132929I
b = 0.232633 + 0.073399I
7.99878 + 3.29456I 79.2024 47.4542I
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.897315 0.915050I
a = 0.059712 + 0.132929I
b = 0.232633 0.073399I
7.99878 3.29456I 79.2024 + 47.4542I
u = 0.404936 + 0.589401I
a = 1.90809 1.55602I
b = 0.60872 1.28187I
3.85891 4.38520I 4.22215 + 3.53032I
u = 0.404936 0.589401I
a = 1.90809 + 1.55602I
b = 0.60872 + 1.28187I
3.85891 + 4.38520I 4.22215 3.53032I
u = 0.451703 + 1.222140I
a = 0.26811 1.73234I
b = 0.44350 3.82544I
6.86605 + 4.55927I 40.6626 31.2987I
u = 0.451703 1.222140I
a = 0.26811 + 1.73234I
b = 0.44350 + 3.82544I
6.86605 4.55927I 40.6626 + 31.2987I
u = 0.365073 + 0.561552I
a = 1.097390 0.689191I
b = 1.05744 + 0.96070I
3.81957 + 5.52202I 4.99553 7.13279I
u = 0.365073 0.561552I
a = 1.097390 + 0.689191I
b = 1.05744 0.96070I
3.81957 5.52202I 4.99553 + 7.13279I
10
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
u
37
20u
36
+ ··· 10u + 1
c
2
u
37
2u
36
+ ··· + 2u 1
c
3
u
37
+ 2u
36
+ ··· + 8u 1
c
4
u
37
+ u
36
+ ··· u 1
c
5
u
37
7u
35
+ ··· 2u 1
c
6
u
37
+ 2u
36
+ ··· + 2u + 1
c
7
u
37
3u
36
+ ··· 7u 1
c
8
u
37
u
36
+ ··· u + 1
c
9
u
37
+ 20u
36
+ ··· + 23u + 1
c
10
u
37
17u
36
+ ··· + 23u 1
c
11
u
37
4u
36
+ ··· 2u + 1
c
12
u
37
+ 7u
36
+ ··· + 3u 1
11
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
y
37
+ 4y
36
+ ··· 10y 1
c
2
, c
6
y
37
+ 20y
36
+ ··· 10y 1
c
3
y
37
6y
36
+ ··· + 8y 1
c
4
, c
8
y
37
+ 21y
36
+ ··· 29y 1
c
5
y
37
14y
36
+ ··· 12y 1
c
7
y
37
17y
36
+ ··· + 17y 1
c
9
y
37
+ 4y
36
+ ··· + 13y 1
c
10
y
37
+ 7y
36
+ ··· + 35y 1
c
11
y
37
+ 4y
36
+ ··· + 24y 1
c
12
y
37
17y
36
+ ··· + 17y 1
12