12a
0232
(K12a
0232
)
A knot diagram
1
Linearized knot diagam
3 6 7 9 12 2 10 4 8 1 5 11
Solving Sequence
2,6
3 7
4,10
8 1 11 9 12 5
c
2
c
6
c
3
c
7
c
1
c
10
c
9
c
12
c
5
c
4
, c
8
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h−3u
23
7u
22
+ ··· + 4b 22, u
23
+ 15u
22
+ ··· + 8a 66, u
24
+ 5u
23
+ ··· 12u 4i
I
u
2
= h−u
37
+ 2u
36
+ ··· + 2b 1, u
37
a + 3u
37
+ ··· + a 6, u
38
2u
37
+ ··· 2u + 1i
I
u
3
= h−au + b a, a
2
+ a + 1, u
2
+ 1i
I
u
4
= hau + b a + u, a
2
+ a + 1, u
2
+ 1i
* 4 irreducible components of dim
C
= 0, with total 108 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h−3u
23
7u
22
+· · ·+4b22, u
23
+15u
22
+· · ·+8a66, u
24
+5u
23
+· · ·12u4i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
u
2
a
7
=
u
u
a
4
=
u
4
+ u
2
+ 1
u
4
a
10
=
0.125000u
23
1.87500u
22
+ ··· + 13.1250u + 8.25000
3
4
u
23
+
7
4
u
22
+ ··· +
35
4
u +
11
2
a
8
=
1
8
u
23
3
8
u
22
+ ··· +
13
8
u +
3
4
1
4
u
23
+
5
4
u
22
+ ···
3
4
u
1
2
a
1
=
u
2
+ 1
u
4
a
11
=
3
8
u
23
13
8
u
22
+ ··· +
67
8
u +
19
4
7
4
u
23
+
29
4
u
22
+ ···
21
4
u
1
2
a
9
=
3
8
u
23
9
8
u
22
+ ··· +
35
8
u +
13
4
3
4
u
23
+
15
4
u
22
+ ···
11
4
u
1
2
a
12
=
1
8
u
23
3
8
u
22
+ ··· +
13
8
u +
7
4
3
4
u
23
+
13
4
u
22
+ ···
17
4
u
3
2
a
5
=
7
8
u
23
+
29
8
u
22
+ ···
35
8
u
11
4
3
4
u
23
+
7
4
u
22
+ ··· +
35
4
u +
11
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 11u
23
+ 55u
22
+ 202u
21
+ 511u
20
+ 1091u
19
+ 1935u
18
+
3107u
17
+ 4507u
16
+ 6140u
15
+ 7797u
14
+ 9280u
13
+ 10305u
12
+ 10665u
11
+ 10334u
10
+
9374u
9
+ 7922u
8
+ 6201u
7
+ 4343u
6
+ 2630u
5
+ 1231u
4
+ 311u
3
76u
2
124u 58
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
24
+ 13u
23
+ ··· 56u + 16
c
2
, c
6
u
24
5u
23
+ ··· + 12u 4
c
3
u
24
+ 5u
23
+ ··· 256u 64
c
4
, c
5
, c
8
c
11
u
24
4u
22
+ ··· 2u 1
c
7
, c
9
, c
10
c
12
u
24
+ 8u
23
+ ··· + 4u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
24
3y
23
+ ··· 11552y + 256
c
2
, c
6
y
24
+ 13y
23
+ ··· 56y + 16
c
3
y
24
7y
23
+ ··· 40960y + 4096
c
4
, c
5
, c
8
c
11
y
24
8y
23
+ ··· 4y + 1
c
7
, c
9
, c
10
c
12
y
24
+ 20y
23
+ ··· + 4y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.257222 + 1.017220I
a = 0.401654 0.008767I
b = 0.272209 0.624992I
3.50051 + 2.57930I 16.8117 4.7598I
u = 0.257222 1.017220I
a = 0.401654 + 0.008767I
b = 0.272209 + 0.624992I
3.50051 2.57930I 16.8117 + 4.7598I
u = 0.908792 + 0.262544I
a = 1.44352 1.19871I
b = 0.476457 + 0.127868I
3.72106 + 11.69860I 5.36042 8.05318I
u = 0.908792 0.262544I
a = 1.44352 + 1.19871I
b = 0.476457 0.127868I
3.72106 11.69860I 5.36042 + 8.05318I
u = 0.769198 + 0.739991I
a = 0.486482 + 0.038089I
b = 0.467190 + 0.882825I
7.88027 3.10260I 2.08649 + 2.69746I
u = 0.769198 0.739991I
a = 0.486482 0.038089I
b = 0.467190 0.882825I
7.88027 + 3.10260I 2.08649 2.69746I
u = 0.848943 + 0.362352I
a = 1.20123 + 1.01267I
b = 0.567849 0.040943I
5.70577 + 0.22260I 1.77984 + 2.03296I
u = 0.848943 0.362352I
a = 1.20123 1.01267I
b = 0.567849 + 0.040943I
5.70577 0.22260I 1.77984 2.03296I
u = 0.292804 + 0.863918I
a = 0.320360 + 0.625045I
b = 0.081672 + 0.710622I
0.53022 1.37947I 5.11379 + 4.42535I
u = 0.292804 0.863918I
a = 0.320360 0.625045I
b = 0.081672 0.710622I
0.53022 + 1.37947I 5.11379 4.42535I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.736879 + 0.861025I
a = 0.481995 0.036451I
b = 0.337196 1.007010I
7.52630 + 8.69544I 3.16830 8.31175I
u = 0.736879 0.861025I
a = 0.481995 + 0.036451I
b = 0.337196 + 1.007010I
7.52630 8.69544I 3.16830 + 8.31175I
u = 0.741563
a = 1.82111
b = 0.349010
5.65295 15.3580
u = 0.441869 + 1.180010I
a = 0.07853 1.44892I
b = 0.32749 2.36407I
9.05396 4.24780I 18.5113 + 3.9565I
u = 0.441869 1.180010I
a = 0.07853 + 1.44892I
b = 0.32749 + 2.36407I
9.05396 + 4.24780I 18.5113 3.9565I
u = 0.139106 + 1.265020I
a = 0.512595 + 0.449475I
b = 1.292080 + 0.305072I
0.20869 2.74167I 5.66024 + 3.24559I
u = 0.139106 1.265020I
a = 0.512595 0.449475I
b = 1.292080 0.305072I
0.20869 + 2.74167I 5.66024 3.24559I
u = 0.601530 + 1.137570I
a = 0.60703 + 1.34772I
b = 1.24236 + 1.92686I
3.38318 5.58195I 4.62085 + 2.23324I
u = 0.601530 1.137570I
a = 0.60703 1.34772I
b = 1.24236 1.92686I
3.38318 + 5.58195I 4.62085 2.23324I
u = 0.267870 + 1.300090I
a = 0.722509 0.703157I
b = 1.78732 0.89031I
1.42153 + 7.81679I 9.52899 7.40459I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.267870 1.300090I
a = 0.722509 + 0.703157I
b = 1.78732 + 0.89031I
1.42153 7.81679I 9.52899 + 7.40459I
u = 0.589102 + 1.197530I
a = 0.70080 1.54523I
b = 1.50441 2.44048I
0.8984 17.1574I 8.6015 + 11.3063I
u = 0.589102 1.197530I
a = 0.70080 + 1.54523I
b = 1.50441 + 2.44048I
0.8984 + 17.1574I 8.6015 11.3063I
u = 0.395000
a = 0.569953
b = 0.314058
0.952863 10.1550
7
II. I
u
2
=
h−u
37
+2u
36
+· · ·+2b 1, u
37
a+3u
37
+· · ·+a 6, u
38
2u
37
+· · ·2u +1i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
u
2
a
7
=
u
u
a
4
=
u
4
+ u
2
+ 1
u
4
a
10
=
a
1
2
u
37
u
36
+ ···
1
2
u +
1
2
a
8
=
1
2
u
37
a
1
2
u
37
+ ··· +
1
2
a
1
2
1
2
u
37
a + u
37
+ ···
1
2
a
3
2
a
1
=
u
2
+ 1
u
4
a
11
=
1
2
u
36
1
2
u
35
+ ··· + a 1
1
2
u
37
1
2
u
36
+ ··· + au +
1
2
a
9
=
u
36
a +
1
2
u
36
+ ··· +
1
2
a 1
1
2
u
37
a +
3
2
u
37
+ ··· + 5u
5
2
a
12
=
u
37
+ 2u
36
+ ··· +
1
2
a + 1
3
2
u
37
+ 4u
36
+ ··· +
1
2
a +
3
2
a
5
=
1
2
u
37
+
3
2
u
36
+ ··· + a 2u
1
2
u
35
+
1
2
u
34
+ ··· +
3
2
u
1
2
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 2u
35
16u
33
64u
31
+ 4u
30
160u
29
+ 28u
28
270u
27
+ 96u
26
312u
25
+ 192u
24
244u
23
+ 228u
22
132u
21
+ 120u
20
66u
19
56u
18
36u
17
128u
16
+ 12u
15
48u
14
+
44u
13
+ 32u
12
+ 16u
11
+ 32u
10
28u
9
+ 4u
8
20u
7
+ 4u
6
+ 4u
4
+ 6u
3
4u
2
8
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
38
+ 20u
37
+ ··· + 4u + 1)
2
c
2
, c
6
(u
38
+ 2u
37
+ ··· + 2u + 1)
2
c
3
(u
38
2u
37
+ ··· 48u + 4)
2
c
4
, c
5
, c
8
c
11
u
76
u
75
+ ··· 10u + 1
c
7
, c
9
, c
10
c
12
u
76
+ 27u
75
+ ··· + 50u + 1
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
38
+ 32y
36
+ ··· + 16y + 1)
2
c
2
, c
6
(y
38
+ 20y
37
+ ··· + 4y + 1)
2
c
3
(y
38
14y
37
+ ··· 744y + 16)
2
c
4
, c
5
, c
8
c
11
y
76
27y
75
+ ··· 50y + 1
c
7
, c
9
, c
10
c
12
y
76
+ 45y
75
+ ··· 850y + 1
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.092692 + 1.025860I
a = 0.318432 + 1.014780I
b = 0.334512 + 0.975336I
1.74996 2.04750I 12.12731 + 2.88539I
u = 0.092692 + 1.025860I
a = 0.039232 0.182499I
b = 1.017750 0.618683I
1.74996 2.04750I 12.12731 + 2.88539I
u = 0.092692 1.025860I
a = 0.318432 1.014780I
b = 0.334512 0.975336I
1.74996 + 2.04750I 12.12731 2.88539I
u = 0.092692 1.025860I
a = 0.039232 + 0.182499I
b = 1.017750 + 0.618683I
1.74996 + 2.04750I 12.12731 2.88539I
u = 0.879654 + 0.307202I
a = 1.23008 + 1.04497I
b = 0.628001 + 0.013623I
4.78266 5.95391I 3.44271 + 3.17174I
u = 0.879654 + 0.307202I
a = 1.40216 1.08867I
b = 0.396763 + 0.200388I
4.78266 5.95391I 3.44271 + 3.17174I
u = 0.879654 0.307202I
a = 1.23008 1.04497I
b = 0.628001 0.013623I
4.78266 + 5.95391I 3.44271 3.17174I
u = 0.879654 0.307202I
a = 1.40216 + 1.08867I
b = 0.396763 0.200388I
4.78266 + 5.95391I 3.44271 3.17174I
u = 0.417100 + 0.987049I
a = 0.244327 0.928480I
b = 0.99403 1.23227I
0.72961 1.85914I 8.12259 + 1.13673I
u = 0.417100 + 0.987049I
a = 0.11634 + 1.93055I
b = 0.68195 + 2.26923I
0.72961 1.85914I 8.12259 + 1.13673I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.417100 0.987049I
a = 0.244327 + 0.928480I
b = 0.99403 + 1.23227I
0.72961 + 1.85914I 8.12259 1.13673I
u = 0.417100 0.987049I
a = 0.11634 1.93055I
b = 0.68195 2.26923I
0.72961 + 1.85914I 8.12259 1.13673I
u = 0.751160 + 0.801850I
a = 0.632410 + 0.158393I
b = 0.180392 0.828562I
7.77825 2.79187I 2.37424 + 2.87718I
u = 0.751160 + 0.801850I
a = 0.314560 + 0.230340I
b = 0.600746 + 1.023140I
7.77825 2.79187I 2.37424 + 2.87718I
u = 0.751160 0.801850I
a = 0.632410 0.158393I
b = 0.180392 + 0.828562I
7.77825 + 2.79187I 2.37424 2.87718I
u = 0.751160 0.801850I
a = 0.314560 0.230340I
b = 0.600746 1.023140I
7.77825 + 2.79187I 2.37424 2.87718I
u = 0.526392 + 1.014900I
a = 0.419575 + 0.987304I
b = 0.069923 + 1.154680I
1.44131 2.65190I 4.42318 + 2.95185I
u = 0.526392 + 1.014900I
a = 0.08723 + 1.46483I
b = 0.84966 + 1.95526I
1.44131 2.65190I 4.42318 + 2.95185I
u = 0.526392 1.014900I
a = 0.419575 0.987304I
b = 0.069923 1.154680I
1.44131 + 2.65190I 4.42318 2.95185I
u = 0.526392 1.014900I
a = 0.08723 1.46483I
b = 0.84966 1.95526I
1.44131 + 2.65190I 4.42318 2.95185I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.463054 + 1.059920I
a = 0.096981 1.116530I
b = 1.12569 1.36983I
1.64453 3.37129I 10.06940 + 3.97155I
u = 0.463054 + 1.059920I
a = 0.44289 1.98577I
b = 0.40811 2.85964I
1.64453 3.37129I 10.06940 + 3.97155I
u = 0.463054 1.059920I
a = 0.096981 + 1.116530I
b = 1.12569 + 1.36983I
1.64453 + 3.37129I 10.06940 3.97155I
u = 0.463054 1.059920I
a = 0.44289 + 1.98577I
b = 0.40811 + 2.85964I
1.64453 + 3.37129I 10.06940 3.97155I
u = 0.369116 + 1.125930I
a = 0.394531 1.005700I
b = 0.57224 1.83555I
4.11479 + 2.70212I 12.89170 3.76810I
u = 0.369116 + 1.125930I
a = 0.043624 + 0.868515I
b = 0.506712 + 0.873442I
4.11479 + 2.70212I 12.89170 3.76810I
u = 0.369116 1.125930I
a = 0.394531 + 1.005700I
b = 0.57224 + 1.83555I
4.11479 2.70212I 12.89170 + 3.76810I
u = 0.369116 1.125930I
a = 0.043624 0.868515I
b = 0.506712 0.873442I
4.11479 2.70212I 12.89170 + 3.76810I
u = 0.536688 + 1.074140I
a = 0.351361 + 1.092920I
b = 0.182927 + 1.250470I
0.50867 + 8.15703I 6.43185 7.89440I
u = 0.536688 + 1.074140I
a = 0.12188 1.56571I
b = 0.71430 2.45999I
0.50867 + 8.15703I 6.43185 7.89440I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.536688 1.074140I
a = 0.351361 1.092920I
b = 0.182927 1.250470I
0.50867 8.15703I 6.43185 + 7.89440I
u = 0.536688 1.074140I
a = 0.12188 + 1.56571I
b = 0.71430 + 2.45999I
0.50867 8.15703I 6.43185 + 7.89440I
u = 0.424797 + 0.672856I
a = 0.573283 + 0.461174I
b = 0.799729 1.006180I
0.24459 + 5.40327I 7.14076 8.73282I
u = 0.424797 + 0.672856I
a = 2.15958 + 0.01504I
b = 1.15044 1.04061I
0.24459 + 5.40327I 7.14076 8.73282I
u = 0.424797 0.672856I
a = 0.573283 0.461174I
b = 0.799729 + 1.006180I
0.24459 5.40327I 7.14076 + 8.73282I
u = 0.424797 0.672856I
a = 2.15958 0.01504I
b = 1.15044 + 1.04061I
0.24459 5.40327I 7.14076 + 8.73282I
u = 0.606947 + 0.511177I
a = 0.829981 + 0.188456I
b = 0.573546 + 0.654578I
2.90982 1.84462I 1.62797 + 3.07541I
u = 0.606947 + 0.511177I
a = 1.49164 + 0.70399I
b = 0.684526 0.462319I
2.90982 1.84462I 1.62797 + 3.07541I
u = 0.606947 0.511177I
a = 0.829981 0.188456I
b = 0.573546 0.654578I
2.90982 + 1.84462I 1.62797 3.07541I
u = 0.606947 0.511177I
a = 1.49164 0.70399I
b = 0.684526 + 0.462319I
2.90982 + 1.84462I 1.62797 3.07541I
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.504117 + 1.123560I
a = 0.318845 1.236270I
b = 0.11066 2.22477I
3.18042 + 5.01836I 11.22503 3.99262I
u = 0.504117 + 1.123560I
a = 0.45678 + 1.63903I
b = 1.08898 + 2.11659I
3.18042 + 5.01836I 11.22503 3.99262I
u = 0.504117 1.123560I
a = 0.318845 + 1.236270I
b = 0.11066 + 2.22477I
3.18042 5.01836I 11.22503 + 3.99262I
u = 0.504117 1.123560I
a = 0.45678 1.63903I
b = 1.08898 2.11659I
3.18042 5.01836I 11.22503 + 3.99262I
u = 0.350867 + 1.182120I
a = 0.332778 0.899175I
b = 1.46268 1.13492I
5.61147 + 2.22079I 15.5130 1.9644I
u = 0.350867 + 1.182120I
a = 0.63487 1.32116I
b = 0.89277 2.13230I
5.61147 + 2.22079I 15.5130 1.9644I
u = 0.350867 1.182120I
a = 0.332778 + 0.899175I
b = 1.46268 + 1.13492I
5.61147 2.22079I 15.5130 + 1.9644I
u = 0.350867 1.182120I
a = 0.63487 + 1.32116I
b = 0.89277 + 2.13230I
5.61147 2.22079I 15.5130 + 1.9644I
u = 0.649945 + 0.400847I
a = 0.907087 0.030828I
b = 0.669846 + 0.531686I
2.46586 3.52445I 2.75723 + 3.36629I
u = 0.649945 + 0.400847I
a = 1.71404 0.47572I
b = 0.401143 + 0.674066I
2.46586 3.52445I 2.75723 + 3.36629I
15
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.649945 0.400847I
a = 0.907087 + 0.030828I
b = 0.669846 0.531686I
2.46586 + 3.52445I 2.75723 3.36629I
u = 0.649945 0.400847I
a = 1.71404 + 0.47572I
b = 0.401143 0.674066I
2.46586 + 3.52445I 2.75723 3.36629I
u = 0.736881 + 0.188549I
a = 1.80671 0.41605I
b = 0.309194 0.424971I
1.63069 + 5.81244I 10.15602 5.45281I
u = 0.736881 + 0.188549I
a = 1.78520 1.08774I
b = 0.649257 + 0.400799I
1.63069 + 5.81244I 10.15602 5.45281I
u = 0.736881 0.188549I
a = 1.80671 + 0.41605I
b = 0.309194 + 0.424971I
1.63069 5.81244I 10.15602 + 5.45281I
u = 0.736881 0.188549I
a = 1.78520 + 1.08774I
b = 0.649257 0.400799I
1.63069 5.81244I 10.15602 + 5.45281I
u = 0.521806 + 1.155510I
a = 0.36985 1.41416I
b = 0.12817 2.40791I
4.40741 10.53470I 13.1011 + 8.4995I
u = 0.521806 + 1.155510I
a = 0.33140 1.85479I
b = 1.14785 2.73713I
4.40741 10.53470I 13.1011 + 8.4995I
u = 0.521806 1.155510I
a = 0.36985 + 1.41416I
b = 0.12817 + 2.40791I
4.40741 + 10.53470I 13.1011 8.4995I
u = 0.521806 1.155510I
a = 0.33140 + 1.85479I
b = 1.14785 + 2.73713I
4.40741 + 10.53470I 13.1011 8.4995I
16
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.213295 + 1.276410I
a = 0.662381 0.531928I
b = 1.69785 0.73713I
0.48674 2.48291I 7.53122 + 2.48903I
u = 0.213295 + 1.276410I
a = 0.474667 + 0.655902I
b = 1.214850 + 0.565221I
0.48674 2.48291I 7.53122 + 2.48903I
u = 0.213295 1.276410I
a = 0.662381 + 0.531928I
b = 1.69785 + 0.73713I
0.48674 + 2.48291I 7.53122 2.48903I
u = 0.213295 1.276410I
a = 0.474667 0.655902I
b = 1.214850 0.565221I
0.48674 + 2.48291I 7.53122 2.48903I
u = 0.595105 + 1.170590I
a = 0.56398 1.46203I
b = 1.37249 2.35989I
2.18721 + 11.36400I 6.56181 6.84677I
u = 0.595105 + 1.170590I
a = 0.69980 + 1.41296I
b = 1.30389 + 1.99102I
2.18721 + 11.36400I 6.56181 6.84677I
u = 0.595105 1.170590I
a = 0.56398 + 1.46203I
b = 1.37249 + 2.35989I
2.18721 11.36400I 6.56181 + 6.84677I
u = 0.595105 1.170590I
a = 0.69980 1.41296I
b = 1.30389 1.99102I
2.18721 11.36400I 6.56181 + 6.84677I
u = 0.626124 + 0.193865I
a = 1.60011 0.43169I
b = 0.072389 0.405022I
0.611163 0.610877I 8.09323 + 0.39189I
u = 0.626124 + 0.193865I
a = 1.20644 + 1.13811I
b = 0.766850 0.115790I
0.611163 0.610877I 8.09323 + 0.39189I
17
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.626124 0.193865I
a = 1.60011 + 0.43169I
b = 0.072389 + 0.405022I
0.611163 + 0.610877I 8.09323 0.39189I
u = 0.626124 0.193865I
a = 1.20644 1.13811I
b = 0.766850 + 0.115790I
0.611163 + 0.610877I 8.09323 0.39189I
u = 0.351526 + 0.483850I
a = 0.452401 + 1.125970I
b = 0.847436 0.808834I
0.203455 0.349653I 6.40967 + 1.75614I
u = 0.351526 + 0.483850I
a = 2.63083 + 0.52836I
b = 0.814911 + 1.130250I
0.203455 0.349653I 6.40967 + 1.75614I
u = 0.351526 0.483850I
a = 0.452401 1.125970I
b = 0.847436 + 0.808834I
0.203455 + 0.349653I 6.40967 1.75614I
u = 0.351526 0.483850I
a = 2.63083 0.52836I
b = 0.814911 1.130250I
0.203455 + 0.349653I 6.40967 1.75614I
18
III. I
u
3
= h−au + b a, a
2
+ a + 1, u
2
+ 1i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
1
a
7
=
u
u
a
4
=
1
1
a
10
=
a
au + a
a
8
=
a + u + 1
au + a + 2u + 1
a
1
=
0
1
a
11
=
a
au + 2a
a
9
=
au + a + 1
a + u + 1
a
12
=
a + 1
au + 2a + u + 1
a
5
=
au
au a
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8a 16
19
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u 1)
4
c
2
, c
6
(u
2
+ 1)
2
c
3
u
4
c
4
, c
5
, c
8
c
11
u
4
u
2
+ 1
c
7
, c
10
(u
2
u + 1)
2
c
9
, c
12
(u
2
+ u + 1)
2
20
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y 1)
4
c
2
, c
6
(y + 1)
4
c
3
y
4
c
4
, c
5
, c
8
c
11
(y
2
y + 1)
2
c
7
, c
9
, c
10
c
12
(y
2
+ y + 1)
2
21
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.000000I
a = 0.500000 + 0.866025I
b = 1.36603 + 0.36603I
1.64493 + 4.05977I 12.00000 6.92820I
u = 1.000000I
a = 0.500000 0.866025I
b = 0.36603 1.36603I
1.64493 4.05977I 12.00000 + 6.92820I
u = 1.000000I
a = 0.500000 + 0.866025I
b = 0.36603 + 1.36603I
1.64493 + 4.05977I 12.00000 6.92820I
u = 1.000000I
a = 0.500000 0.866025I
b = 1.36603 0.36603I
1.64493 4.05977I 12.00000 + 6.92820I
22
IV. I
u
4
= hau + b a + u, a
2
+ a + 1, u
2
+ 1i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
1
a
7
=
u
u
a
4
=
1
1
a
10
=
a
au + a u
a
8
=
u 1
au + u 1
a
1
=
0
1
a
11
=
a
au + 2a u
a
9
=
au + u 1
u 1
a
12
=
a + 1
2a u + 1
a
5
=
au
au + a + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
23
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u 1)
4
c
2
, c
6
(u
2
+ 1)
2
c
3
u
4
c
4
, c
5
, c
8
c
11
u
4
u
2
+ 1
c
7
, c
10
(u
2
u + 1)
2
c
9
, c
12
(u
2
+ u + 1)
2
24
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y 1)
4
c
2
, c
6
(y + 1)
4
c
3
y
4
c
4
, c
5
, c
8
c
11
(y
2
y + 1)
2
c
7
, c
9
, c
10
c
12
(y
2
+ y + 1)
2
25
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.000000I
a = 0.500000 + 0.866025I
b = 0.366025 + 0.366025I
1.64493 12.0000
u = 1.000000I
a = 0.500000 0.866025I
b = 1.36603 1.36603I
1.64493 12.0000
u = 1.000000I
a = 0.500000 + 0.866025I
b = 1.36603 + 1.36603I
1.64493 12.0000
u = 1.000000I
a = 0.500000 0.866025I
b = 0.366025 0.366025I
1.64493 12.0000
26
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
8
)(u
24
+ 13u
23
+ ··· 56u + 16)(u
38
+ 20u
37
+ ··· + 4u + 1)
2
c
2
, c
6
((u
2
+ 1)
4
)(u
24
5u
23
+ ··· + 12u 4)(u
38
+ 2u
37
+ ··· + 2u + 1)
2
c
3
u
8
(u
24
+ 5u
23
+ ··· 256u 64)(u
38
2u
37
+ ··· 48u + 4)
2
c
4
, c
5
, c
8
c
11
((u
4
u
2
+ 1)
2
)(u
24
4u
22
+ ··· 2u 1)(u
76
u
75
+ ··· 10u + 1)
c
7
, c
10
((u
2
u + 1)
4
)(u
24
+ 8u
23
+ ··· + 4u + 1)(u
76
+ 27u
75
+ ··· + 50u + 1)
c
9
, c
12
((u
2
+ u + 1)
4
)(u
24
+ 8u
23
+ ··· + 4u + 1)(u
76
+ 27u
75
+ ··· + 50u + 1)
27
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
8
)(y
24
3y
23
+ ··· 11552y + 256)
· (y
38
+ 32y
36
+ ··· + 16y + 1)
2
c
2
, c
6
((y + 1)
8
)(y
24
+ 13y
23
+ ··· 56y + 16)(y
38
+ 20y
37
+ ··· + 4y + 1)
2
c
3
y
8
(y
24
7y
23
+ ··· 40960y + 4096)
· (y
38
14y
37
+ ··· 744y + 16)
2
c
4
, c
5
, c
8
c
11
((y
2
y + 1)
4
)(y
24
8y
23
+ ··· 4y + 1)(y
76
27y
75
+ ··· 50y + 1)
c
7
, c
9
, c
10
c
12
((y
2
+ y + 1)
4
)(y
24
+ 20y
23
+ ··· + 4y + 1)
· (y
76
+ 45y
75
+ ··· 850y + 1)
28