12a
0235
(K12a
0235
)
A knot diagram
1
Linearized knot diagam
3 6 7 10 2 5 11 12 4 1 9 8
Solving Sequence
2,6
3
1,10
11 5 7 8 4 9 12
c
2
c
1
c
10
c
5
c
6
c
7
c
4
c
9
c
12
c
3
, c
8
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h42u
95
107u
94
+ ··· + 4b + 15, 8u
95
5u
94
+ ··· + 4a 3, u
96
4u
95
+ ··· + 2u 1i
I
u
2
= hb a, u
2
a + a
2
+ au + u
2
+ a + u + 1, u
3
+ u
2
1i
I
u
3
= hb 1, a 1, u
3
+ u
2
1i
* 3 irreducible components of dim
C
= 0, with total 105 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h42u
95
107u
94
+· · ·+4b+15, 8u
95
5u
94
+· · ·+4a3, u
96
4u
95
+· · ·+2u1i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
u
2
a
1
=
u
2
+ 1
u
4
a
10
=
2u
95
+
5
4
u
94
+ ··· +
3
4
u +
3
4
10.5000u
95
+ 26.7500u
94
+ ··· + 7.75000u 3.75000
a
11
=
3.75000u
95
+ 14.5000u
94
+ ··· + 7.25000u 4.75000
7
4
u
95
+
17
2
u
94
+ ··· +
11
4
u 4
a
5
=
u
u
a
7
=
u
3
u
3
+ u
a
8
=
1
4
u
93
3
4
u
92
+ ···
7
2
u +
3
4
1
4
u
95
3
4
u
94
+ ···
15
2
u
3
+
15
4
u
2
a
4
=
u
8
+ u
6
u
4
+ 1
u
8
+ 2u
6
2u
4
+ 2u
2
a
9
=
4u
95
57
4
u
94
+ ···
19
4
u +
21
4
1
2
u
95
19
4
u
94
+ ···
11
4
u +
15
4
a
12
=
11
4
u
95
+
43
4
u
94
+ ··· + 5u
11
4
13
4
u
95
29
4
u
94
+ ··· +
5
4
u
2
5
2
u
(ii) Obstruction class = 1
(iii) Cusp Shapes =
11
4
u
95
+
3
2
u
94
+ ···
29
4
u
13
2
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
u
96
+ 32u
95
+ ··· 6u + 1
c
2
, c
5
u
96
+ 4u
95
+ ··· 2u 1
c
3
u
96
4u
95
+ ··· + 348300u 31428
c
4
, c
9
u
96
u
95
+ ··· + 512u + 512
c
7
u
96
4u
95
+ ··· 1638u 193
c
8
, c
11
, c
12
u
96
+ 4u
95
+ ··· 10u 1
c
10
u
96
+ 20u
95
+ ··· 142864u + 20513
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
96
+ 68y
95
+ ··· + 6y + 1
c
2
, c
5
y
96
32y
95
+ ··· + 6y + 1
c
3
y
96
16y
95
+ ··· 14375034360y + 987719184
c
4
, c
9
y
96
49y
95
+ ··· 5898240y + 262144
c
7
y
96
+ 8y
95
+ ··· 678546y + 37249
c
8
, c
11
, c
12
y
96
+ 88y
95
+ ··· 50y + 1
c
10
y
96
+ 36y
95
+ ··· 203007043282y + 420783169
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.673892 + 0.747342I
a = 0.35572 + 1.82806I
b = 1.40911 + 1.47675I
1.96032 4.54873I 0
u = 0.673892 0.747342I
a = 0.35572 1.82806I
b = 1.40911 1.47675I
1.96032 + 4.54873I 0
u = 0.610514 + 0.800542I
a = 1.56996 + 0.96365I
b = 1.181540 0.299685I
6.80579 + 1.30564I 0
u = 0.610514 0.800542I
a = 1.56996 0.96365I
b = 1.181540 + 0.299685I
6.80579 1.30564I 0
u = 0.979747 + 0.046907I
a = 0.155311 0.922681I
b = 0.0381284 + 0.0275714I
1.98868 1.54484I 0
u = 0.979747 0.046907I
a = 0.155311 + 0.922681I
b = 0.0381284 0.0275714I
1.98868 + 1.54484I 0
u = 0.709327 + 0.742547I
a = 0.28755 1.74215I
b = 1.25847 1.44166I
3.38377 1.26164I 0
u = 0.709327 0.742547I
a = 0.28755 + 1.74215I
b = 1.25847 + 1.44166I
3.38377 + 1.26164I 0
u = 0.967386 + 0.065292I
a = 1.229590 0.581737I
b = 2.15051 0.41869I
4.83200 + 3.64059I 0
u = 0.967386 0.065292I
a = 1.229590 + 0.581737I
b = 2.15051 + 0.41869I
4.83200 3.64059I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.030310 + 0.051234I
a = 0.193028 + 1.096310I
b = 0.0651951 + 0.0213549I
7.53067 4.37669I 0
u = 1.030310 0.051234I
a = 0.193028 1.096310I
b = 0.0651951 0.0213549I
7.53067 + 4.37669I 0
u = 0.733394 + 0.726335I
a = 0.95055 + 1.72774I
b = 0.647889 + 0.840039I
3.78669 0.46878I 0
u = 0.733394 0.726335I
a = 0.95055 1.72774I
b = 0.647889 0.840039I
3.78669 + 0.46878I 0
u = 0.659051 + 0.798621I
a = 1.60539 1.26651I
b = 1.319350 0.083707I
0.15569 + 3.01549I 0
u = 0.659051 0.798621I
a = 1.60539 + 1.26651I
b = 1.319350 + 0.083707I
0.15569 3.01549I 0
u = 0.762531 + 0.701280I
a = 0.57033 1.80163I
b = 0.232663 1.020810I
0.63753 4.16046I 0
u = 0.762531 0.701280I
a = 0.57033 + 1.80163I
b = 0.232663 + 1.020810I
0.63753 + 4.16046I 0
u = 0.960082
a = 1.35659
b = 2.25623
1.13345 0
u = 0.707856 + 0.762895I
a = 1.32470 1.62047I
b = 1.068090 0.609735I
0.77305 + 3.23760I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.707856 0.762895I
a = 1.32470 + 1.62047I
b = 1.068090 + 0.609735I
0.77305 3.23760I 0
u = 0.775850 + 0.699755I
a = 0.36075 + 1.44555I
b = 1.10144 + 1.11306I
2.18338 + 1.93521I 0
u = 0.775850 0.699755I
a = 0.36075 1.44555I
b = 1.10144 1.11306I
2.18338 1.93521I 0
u = 0.665389 + 0.826895I
a = 1.81218 + 1.28162I
b = 1.59046 + 0.04424I
1.13562 + 7.07104I 0
u = 0.665389 0.826895I
a = 1.81218 1.28162I
b = 1.59046 0.04424I
1.13562 7.07104I 0
u = 0.730626 + 0.577652I
a = 0.65546 1.66699I
b = 1.44919 1.07027I
3.32770 + 3.63559I 0
u = 0.730626 0.577652I
a = 0.65546 + 1.66699I
b = 1.44919 + 1.07027I
3.32770 3.63559I 0
u = 0.660642 + 0.842059I
a = 1.91437 1.22201I
b = 1.70662 + 0.06127I
4.43080 + 10.74230I 0
u = 0.660642 0.842059I
a = 1.91437 + 1.22201I
b = 1.70662 0.06127I
4.43080 10.74230I 0
u = 0.901488 + 0.213540I
a = 0.510275 + 0.624002I
b = 0.020787 0.184467I
4.26322 0.28528I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.901488 0.213540I
a = 0.510275 0.624002I
b = 0.020787 + 0.184467I
4.26322 + 0.28528I 0
u = 1.073080 + 0.099941I
a = 0.410079 0.769436I
b = 1.58578 0.51734I
6.36389 + 2.68095I 0
u = 1.073080 0.099941I
a = 0.410079 + 0.769436I
b = 1.58578 + 0.51734I
6.36389 2.68095I 0
u = 1.083550 + 0.131554I
a = 0.347074 + 0.994674I
b = 1.54158 + 0.66296I
5.41947 + 6.78456I 0
u = 1.083550 0.131554I
a = 0.347074 0.994674I
b = 1.54158 0.66296I
5.41947 6.78456I 0
u = 0.784865 + 0.781046I
a = 0.09778 + 1.55559I
b = 0.73470 + 1.51372I
1.86446 + 1.37751I 0
u = 0.784865 0.781046I
a = 0.09778 1.55559I
b = 0.73470 1.51372I
1.86446 1.37751I 0
u = 1.105400 + 0.077234I
a = 0.162873 + 0.610352I
b = 1.42379 + 0.40984I
12.97280 + 0.50568I 0
u = 1.105400 0.077234I
a = 0.162873 0.610352I
b = 1.42379 0.40984I
12.97280 0.50568I 0
u = 0.988693 + 0.501263I
a = 0.452510 + 0.076254I
b = 0.413738 + 0.804553I
3.24273 + 0.34411I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.988693 0.501263I
a = 0.452510 0.076254I
b = 0.413738 0.804553I
3.24273 0.34411I 0
u = 1.101930 + 0.141181I
a = 0.228488 1.073210I
b = 1.46508 0.71255I
11.1619 + 10.3484I 0
u = 1.101930 0.141181I
a = 0.228488 + 1.073210I
b = 1.46508 + 0.71255I
11.1619 10.3484I 0
u = 1.022000 + 0.483742I
a = 0.668093 0.127010I
b = 0.240155 0.912102I
9.09474 + 3.58525I 0
u = 1.022000 0.483742I
a = 0.668093 + 0.127010I
b = 0.240155 + 0.912102I
9.09474 3.58525I 0
u = 0.992459 + 0.552581I
a = 0.194835 0.315236I
b = 0.706176 0.947524I
3.69107 3.59998I 0
u = 0.992459 0.552581I
a = 0.194835 + 0.315236I
b = 0.706176 + 0.947524I
3.69107 + 3.59998I 0
u = 0.968160 + 0.632527I
a = 1.44301 1.24978I
b = 1.86779 0.40200I
4.11887 + 1.23703I 0
u = 0.968160 0.632527I
a = 1.44301 + 1.24978I
b = 1.86779 + 0.40200I
4.11887 1.23703I 0
u = 0.841043 + 0.799563I
a = 0.556872 1.272450I
b = 0.11791 1.48091I
4.25951 + 3.93964I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.841043 0.799563I
a = 0.556872 + 1.272450I
b = 0.11791 + 1.48091I
4.25951 3.93964I 0
u = 0.944916 + 0.675440I
a = 1.34304 + 0.90487I
b = 1.63244 + 0.15845I
1.65341 + 3.36196I 0
u = 0.944916 0.675440I
a = 1.34304 0.90487I
b = 1.63244 0.15845I
1.65341 3.36196I 0
u = 0.947334 + 0.676570I
a = 1.42444 0.49363I
b = 2.17942 0.77675I
1.20862 1.14741I 0
u = 0.947334 0.676570I
a = 1.42444 + 0.49363I
b = 2.17942 + 0.77675I
1.20862 + 1.14741I 0
u = 1.030590 + 0.564562I
a = 0.333144 + 0.623335I
b = 0.66234 + 1.25095I
9.99197 6.19410I 0
u = 1.030590 0.564562I
a = 0.333144 0.623335I
b = 0.66234 1.25095I
9.99197 + 6.19410I 0
u = 0.855816 + 0.821883I
a = 0.85261 + 1.35962I
b = 0.13500 + 1.71492I
0.87177 + 6.94889I 0
u = 0.855816 0.821883I
a = 0.85261 1.35962I
b = 0.13500 1.71492I
0.87177 6.94889I 0
u = 0.967510 + 0.689054I
a = 1.41955 + 0.95893I
b = 2.25006 + 1.18191I
3.07239 4.95468I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.967510 0.689054I
a = 1.41955 0.95893I
b = 2.25006 1.18191I
3.07239 + 4.95468I 0
u = 0.914722 + 0.776063I
a = 1.207680 + 0.382210I
b = 0.933874 + 0.933577I
4.03238 + 1.96937I 0
u = 0.914722 0.776063I
a = 1.207680 0.382210I
b = 0.933874 0.933577I
4.03238 1.96937I 0
u = 0.982519 + 0.693996I
a = 1.70891 0.82601I
b = 1.91060 + 0.06642I
2.55755 + 6.74718I 0
u = 0.982519 0.693996I
a = 1.70891 + 0.82601I
b = 1.91060 0.06642I
2.55755 6.74718I 0
u = 0.948900 + 0.743844I
a = 1.51810 + 0.20015I
b = 1.47656 0.53578I
1.36634 + 4.37637I 0
u = 0.948900 0.743844I
a = 1.51810 0.20015I
b = 1.47656 + 0.53578I
1.36634 4.37637I 0
u = 0.361572 + 0.704455I
a = 0.843864 + 0.401713I
b = 0.071734 0.899301I
8.11236 + 1.49674I 7.32882 + 0.I
u = 0.361572 0.704455I
a = 0.843864 0.401713I
b = 0.071734 + 0.899301I
8.11236 1.49674I 7.32882 + 0.I
u = 0.987429 + 0.702312I
a = 1.34748 1.39365I
b = 2.26197 1.56132I
0.07409 8.80368I 0
11
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.987429 0.702312I
a = 1.34748 + 1.39365I
b = 2.26197 + 1.56132I
0.07409 + 8.80368I 0
u = 1.000220 + 0.688530I
a = 1.84068 + 0.93653I
b = 2.06857 0.02614I
2.93811 + 10.02960I 0
u = 1.000220 0.688530I
a = 1.84068 0.93653I
b = 2.06857 + 0.02614I
2.93811 10.02960I 0
u = 0.914517 + 0.802398I
a = 1.37299 0.73011I
b = 0.93505 1.33698I
1.052600 0.890735I 0
u = 0.914517 0.802398I
a = 1.37299 + 0.73011I
b = 0.93505 + 1.33698I
1.052600 + 0.890735I 0
u = 1.021260 + 0.706015I
a = 0.96299 1.80167I
b = 2.01958 1.97104I
1.24695 8.68885I 0
u = 1.021260 0.706015I
a = 0.96299 + 1.80167I
b = 2.01958 + 1.97104I
1.24695 + 8.68885I 0
u = 1.037260 + 0.689346I
a = 0.61941 + 1.75820I
b = 1.72572 + 2.00532I
8.08056 6.91284I 0
u = 1.037260 0.689346I
a = 0.61941 1.75820I
b = 1.72572 2.00532I
8.08056 + 6.91284I 0
u = 0.225872 + 0.712033I
a = 0.513021 0.360124I
b = 0.584992 + 0.987864I
6.75618 7.81009I 5.15386 + 6.01462I
12
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.225872 0.712033I
a = 0.513021 + 0.360124I
b = 0.584992 0.987864I
6.75618 + 7.81009I 5.15386 6.01462I
u = 1.028450 + 0.718935I
a = 0.99531 + 2.02785I
b = 2.09188 + 2.15005I
0.03178 12.86460I 0
u = 1.028450 0.718935I
a = 0.99531 2.02785I
b = 2.09188 2.15005I
0.03178 + 12.86460I 0
u = 1.036220 + 0.723225I
a = 0.93729 2.15016I
b = 2.07005 2.26190I
5.5765 16.5912I 0
u = 1.036220 0.723225I
a = 0.93729 + 2.15016I
b = 2.07005 + 2.26190I
5.5765 + 16.5912I 0
u = 0.229697 + 0.666464I
a = 0.546602 + 0.470321I
b = 0.553918 0.824154I
1.13431 4.43613I 0.95866 + 6.40467I
u = 0.229697 0.666464I
a = 0.546602 0.470321I
b = 0.553918 + 0.824154I
1.13431 + 4.43613I 0.95866 6.40467I
u = 0.315520 + 0.614484I
a = 0.723984 0.544838I
b = 0.295922 + 0.657422I
1.97243 0.73691I 3.75682 + 0.03141I
u = 0.315520 0.614484I
a = 0.723984 + 0.544838I
b = 0.295922 0.657422I
1.97243 + 0.73691I 3.75682 0.03141I
u = 0.670863
a = 0.469393
b = 0.0917950
0.909292 11.8320
13
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.061427 + 0.478934I
a = 0.485445 1.043810I
b = 0.783729 + 0.192259I
1.78729 2.06625I 0.29523 + 4.09574I
u = 0.061427 0.478934I
a = 0.485445 + 1.043810I
b = 0.783729 0.192259I
1.78729 + 2.06625I 0.29523 4.09574I
u = 0.331467 + 0.296157I
a = 0.06815 2.09602I
b = 0.861174 0.827960I
3.49051 + 3.35120I 0.14805 4.26611I
u = 0.331467 0.296157I
a = 0.06815 + 2.09602I
b = 0.861174 + 0.827960I
3.49051 3.35120I 0.14805 + 4.26611I
u = 0.111425 + 0.299353I
a = 0.50854 + 1.82130I
b = 0.676320 + 0.324196I
1.245250 + 0.530627I 6.10933 1.75100I
u = 0.111425 0.299353I
a = 0.50854 1.82130I
b = 0.676320 0.324196I
1.245250 0.530627I 6.10933 + 1.75100I
14
II. I
u
2
= hb a, u
2
a + a
2
+ au + u
2
+ a + u + 1, u
3
+ u
2
1i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
u
2
a
1
=
u
2
+ 1
u
2
u + 1
a
10
=
a
a
a
11
=
u
2
a + au
au
a
5
=
u
u
a
7
=
u
2
1
u
2
+ u 1
a
8
=
u
2
a au a u 2
u
2
a au 1
a
4
=
u
u
a
9
=
a
a
a
12
=
u
2
a u
2
a 2u 1
u
2
a 2u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
2
a + au a 5u 5
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
11
c
12
(u
3
u
2
+ 2u 1)
2
c
2
(u
3
+ u
2
1)
2
c
4
, c
9
u
6
c
5
, c
7
, c
10
(u
3
u
2
+ 1)
2
c
6
, c
8
(u
3
+ u
2
+ 2u + 1)
2
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
6
c
8
, c
11
, c
12
(y
3
+ 3y
2
+ 2y 1)
2
c
2
, c
5
, c
7
c
10
(y
3
y
2
+ 2y 1)
2
c
4
, c
9
y
6
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.877439 + 0.744862I
a = 0.162359 + 0.986732I
b = 0.162359 + 0.986732I
5.65624I 2.97732 5.45590I
u = 0.877439 + 0.744862I
a = 0.500000 0.424452I
b = 0.500000 0.424452I
4.13758 + 2.82812I 1.30443 3.86214I
u = 0.877439 0.744862I
a = 0.162359 0.986732I
b = 0.162359 0.986732I
5.65624I 2.97732 + 5.45590I
u = 0.877439 0.744862I
a = 0.500000 + 0.424452I
b = 0.500000 + 0.424452I
4.13758 2.82812I 1.30443 + 3.86214I
u = 0.754878
a = 1.16236 + 0.98673I
b = 1.16236 + 0.98673I
4.13758 2.82812I 7.82711 0.80415I
u = 0.754878
a = 1.16236 0.98673I
b = 1.16236 0.98673I
4.13758 + 2.82812I 7.82711 + 0.80415I
18
III. I
u
3
= hb 1, a 1, u
3
+ u
2
1i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
u
2
a
1
=
u
2
+ 1
u
2
u + 1
a
10
=
1
1
a
11
=
u
2
+ u
u
a
5
=
u
u
a
7
=
u
2
1
u
2
+ u 1
a
8
=
u
2
2u
2
+ u 1
a
4
=
u
u
a
9
=
1
1
a
12
=
u
u
2
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
2
+ u 1
19
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
11
c
12
u
3
u
2
+ 2u 1
c
2
u
3
+ u
2
1
c
4
, c
9
u
3
c
5
, c
7
, c
10
u
3
u
2
+ 1
c
6
, c
8
u
3
+ u
2
+ 2u + 1
20
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
6
c
8
, c
11
, c
12
y
3
+ 3y
2
+ 2y 1
c
2
, c
5
, c
7
c
10
y
3
y
2
+ 2y 1
c
4
, c
9
y
3
21
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.877439 + 0.744862I
a = 1.00000
b = 1.00000
0 1.66236 0.56228I
u = 0.877439 0.744862I
a = 1.00000
b = 1.00000
0 1.66236 + 0.56228I
u = 0.754878
a = 1.00000
b = 1.00000
0 0.324720
22
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
3
u
2
+ 2u 1)
3
)(u
96
+ 32u
95
+ ··· 6u + 1)
c
2
((u
3
+ u
2
1)
3
)(u
96
+ 4u
95
+ ··· 2u 1)
c
3
((u
3
u
2
+ 2u 1)
3
)(u
96
4u
95
+ ··· + 348300u 31428)
c
4
, c
9
u
9
(u
96
u
95
+ ··· + 512u + 512)
c
5
((u
3
u
2
+ 1)
3
)(u
96
+ 4u
95
+ ··· 2u 1)
c
6
((u
3
+ u
2
+ 2u + 1)
3
)(u
96
+ 32u
95
+ ··· 6u + 1)
c
7
((u
3
u
2
+ 1)
3
)(u
96
4u
95
+ ··· 1638u 193)
c
8
((u
3
+ u
2
+ 2u + 1)
3
)(u
96
+ 4u
95
+ ··· 10u 1)
c
10
((u
3
u
2
+ 1)
3
)(u
96
+ 20u
95
+ ··· 142864u + 20513)
c
11
, c
12
((u
3
u
2
+ 2u 1)
3
)(u
96
+ 4u
95
+ ··· 10u 1)
23
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
6
((y
3
+ 3y
2
+ 2y 1)
3
)(y
96
+ 68y
95
+ ··· + 6y + 1)
c
2
, c
5
((y
3
y
2
+ 2y 1)
3
)(y
96
32y
95
+ ··· + 6y + 1)
c
3
(y
3
+ 3y
2
+ 2y 1)
3
· (y
96
16y
95
+ ··· 14375034360y + 987719184)
c
4
, c
9
y
9
(y
96
49y
95
+ ··· 5898240y + 262144)
c
7
((y
3
y
2
+ 2y 1)
3
)(y
96
+ 8y
95
+ ··· 678546y + 37249)
c
8
, c
11
, c
12
((y
3
+ 3y
2
+ 2y 1)
3
)(y
96
+ 88y
95
+ ··· 50y + 1)
c
10
(y
3
y
2
+ 2y 1)
3
· (y
96
+ 36y
95
+ ··· 203007043282y + 420783169)
24