12a
0236
(K12a
0236
)
A knot diagram
1
Linearized knot diagam
3 6 7 10 2 5 11 12 1 4 8 9
Solving Sequence
8,11
12 9 1
4,7
3 10 5 6 2
c
11
c
8
c
12
c
7
c
3
c
10
c
4
c
6
c
2
c
1
, c
5
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h15u
53
+ 20u
52
+ ··· + 2b 8, 49u
53
+ 76u
52
+ ··· + 4a 12, u
54
+ 3u
53
+ ··· + 3u 1i
I
u
2
= hb, a
3
a
2
u + a
2
2au + 4a 2u + 3, u
2
u 1i
I
u
3
= hb + 1, a, u + 1i
* 3 irreducible components of dim
C
= 0, with total 61 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h15u
53
+20u
52
+· · ·+2b8, 49u
53
+76u
52
+· · ·+4a12, u
54
+3u
53
+· · ·+3u1i
(i) Arc colorings
a
8
=
0
u
a
11
=
1
0
a
12
=
1
u
2
a
9
=
u
u
3
+ u
a
1
=
u
2
+ 1
u
4
+ 2u
2
a
4
=
49
4
u
53
19u
52
+ ···
105
4
u + 3
15
2
u
53
10u
52
+ ···
27
2
u + 4
a
7
=
u
u
a
3
=
7
4
u
53
17
4
u
52
+ ···
23
4
u
9
4
3u
53
+
19
4
u
52
+ ··· + 7u
5
4
a
10
=
u
3
2u
u
5
3u
3
+ u
a
5
=
9
4
u
53
327
4
u
51
+ ··· +
9
4
u 5
19
2
u
53
+ 12u
52
+ ··· +
39
2
u 5
a
6
=
1
4
u
53
+
3
4
u
52
+ ··· +
23
4
u +
5
4
u
16
+ 10u
14
+ ··· 6u
3
4u
2
a
2
=
1
4
u
52
1
2
u
51
+ ···
9
2
u
1
4
1
4
u
53
+
1
2
u
52
+ ··· +
11
2
u
2
+
5
4
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8u
53
6u
52
+ ··· 19u +
1
2
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
u
54
+ 18u
53
+ ··· + 28u + 1
c
2
, c
5
u
54
+ 2u
53
+ ··· 14u
2
+ 1
c
3
u
54
4u
53
+ ··· 2672u + 433
c
4
, c
10
u
54
+ 2u
53
+ ··· 224u 64
c
7
, c
8
, c
9
c
11
, c
12
u
54
+ 3u
53
+ ··· + 3u 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
54
+ 38y
53
+ ··· 252y + 1
c
2
, c
5
y
54
18y
53
+ ··· 28y + 1
c
3
y
54
22y
53
+ ··· 7170760y + 187489
c
4
, c
10
y
54
+ 36y
53
+ ··· 1024y + 4096
c
7
, c
8
, c
9
c
11
, c
12
y
54
73y
53
+ ··· 33y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.996240 + 0.174836I
a = 0.046917 0.171089I
b = 1.041700 + 0.270047I
0.93612 + 5.33064I 0
u = 0.996240 0.174836I
a = 0.046917 + 0.171089I
b = 1.041700 0.270047I
0.93612 5.33064I 0
u = 0.921952 + 0.190975I
a = 0.120199 + 0.149841I
b = 0.923078 0.334826I
0.122335 + 0.095210I 8.00000 + 0.I
u = 0.921952 0.190975I
a = 0.120199 0.149841I
b = 0.923078 + 0.334826I
0.122335 0.095210I 8.00000 + 0.I
u = 1.064210 + 0.209793I
a = 0.63295 1.61348I
b = 0.282300 1.168280I
4.75278 2.80286I 0
u = 1.064210 0.209793I
a = 0.63295 + 1.61348I
b = 0.282300 + 1.168280I
4.75278 + 2.80286I 0
u = 1.030910 + 0.348284I
a = 0.95535 1.48256I
b = 0.541961 1.230030I
3.03671 5.51505I 0
u = 1.030910 0.348284I
a = 0.95535 + 1.48256I
b = 0.541961 + 1.230030I
3.03671 + 5.51505I 0
u = 1.050340 + 0.376575I
a = 0.96873 + 1.41375I
b = 0.57619 + 1.29485I
4.25463 11.21320I 0
u = 1.050340 0.376575I
a = 0.96873 1.41375I
b = 0.57619 1.29485I
4.25463 + 11.21320I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.851855 + 0.026742I
a = 0.20081 2.78618I
b = 0.052036 0.745442I
1.33981 2.97841I 16.2532 + 3.7844I
u = 0.851855 0.026742I
a = 0.20081 + 2.78618I
b = 0.052036 + 0.745442I
1.33981 + 2.97841I 16.2532 3.7844I
u = 1.113960 + 0.306274I
a = 0.77810 + 1.39695I
b = 0.384474 + 1.331420I
9.35844 4.90130I 0
u = 1.113960 0.306274I
a = 0.77810 1.39695I
b = 0.384474 1.331420I
9.35844 + 4.90130I 0
u = 1.175560 + 0.167588I
a = 0.43398 + 1.38174I
b = 0.143925 + 1.276040I
6.63511 + 1.61390I 0
u = 1.175560 0.167588I
a = 0.43398 1.38174I
b = 0.143925 1.276040I
6.63511 1.61390I 0
u = 0.519490 + 0.531321I
a = 0.713490 0.165731I
b = 0.208766 + 1.145180I
1.05139 3.92853I 12.01559 + 2.10078I
u = 0.519490 0.531321I
a = 0.713490 + 0.165731I
b = 0.208766 1.145180I
1.05139 + 3.92853I 12.01559 2.10078I
u = 0.723166
a = 0.147422
b = 0.462202
1.27288 6.75210
u = 0.542660 + 0.430784I
a = 0.615074 + 0.066547I
b = 0.268273 0.941014I
0.103530 + 1.138840I 10.54250 3.54234I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.542660 0.430784I
a = 0.615074 0.066547I
b = 0.268273 + 0.941014I
0.103530 1.138840I 10.54250 + 3.54234I
u = 0.364228 + 0.577449I
a = 0.934188 0.148020I
b = 0.138461 + 1.174430I
4.71225 + 1.89294I 15.7177 3.8918I
u = 0.364228 0.577449I
a = 0.934188 + 0.148020I
b = 0.138461 1.174430I
4.71225 1.89294I 15.7177 + 3.8918I
u = 0.250036 + 0.633419I
a = 1.104300 0.206805I
b = 0.417478 + 1.191560I
0.22294 + 7.78581I 9.62304 7.92359I
u = 0.250036 0.633419I
a = 1.104300 + 0.206805I
b = 0.417478 1.191560I
0.22294 7.78581I 9.62304 + 7.92359I
u = 0.225695 + 0.589084I
a = 1.140710 + 0.141782I
b = 0.419400 1.081010I
0.86035 + 2.32908I 7.32309 3.24267I
u = 0.225695 0.589084I
a = 1.140710 0.141782I
b = 0.419400 + 1.081010I
0.86035 2.32908I 7.32309 + 3.24267I
u = 1.55391 + 0.02757I
a = 0.098217 0.452334I
b = 0.140479 0.824642I
6.99883 2.48049I 0
u = 1.55391 0.02757I
a = 0.098217 + 0.452334I
b = 0.140479 + 0.824642I
6.99883 + 2.48049I 0
u = 0.281495 + 0.312842I
a = 0.916828 0.383169I
b = 0.123921 0.686515I
0.459739 + 0.937129I 7.88969 7.07124I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.281495 0.312842I
a = 0.916828 + 0.383169I
b = 0.123921 + 0.686515I
0.459739 0.937129I 7.88969 + 7.07124I
u = 0.135244 + 0.362504I
a = 2.08092 + 0.05555I
b = 0.644171 0.344545I
3.08884 + 1.84557I 1.95761 1.92890I
u = 0.135244 0.362504I
a = 2.08092 0.05555I
b = 0.644171 + 0.344545I
3.08884 1.84557I 1.95761 + 1.92890I
u = 0.208405 + 0.314817I
a = 2.34049 0.17879I
b = 0.644426 + 0.215596I
2.77868 3.61490I 2.24333 + 5.08342I
u = 0.208405 0.314817I
a = 2.34049 + 0.17879I
b = 0.644426 0.215596I
2.77868 + 3.61490I 2.24333 5.08342I
u = 1.63895
a = 0.245628
b = 0.507248
9.62995 0
u = 1.69921 + 0.00586I
a = 0.06322 2.33836I
b = 0.045647 1.071130I
7.84998 + 3.09710I 0
u = 1.69921 0.00586I
a = 0.06322 + 2.33836I
b = 0.045647 + 1.071130I
7.84998 3.09710I 0
u = 1.70201 + 0.03703I
a = 0.494003 0.097988I
b = 1.107300 0.281751I
9.45410 0.92395I 0
u = 1.70201 0.03703I
a = 0.494003 + 0.097988I
b = 1.107300 + 0.281751I
9.45410 + 0.92395I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.72317 + 0.04214I
a = 0.547011 + 0.098121I
b = 1.263400 + 0.305417I
10.67310 6.19112I 0
u = 1.72317 0.04214I
a = 0.547011 0.098121I
b = 1.263400 0.305417I
10.67310 + 6.19112I 0
u = 1.72764
a = 0.546125
b = 1.28414
14.7580 0
u = 1.72994 + 0.09259I
a = 0.38653 1.80892I
b = 0.64312 1.34017I
12.8350 + 7.3215I 0
u = 1.72994 0.09259I
a = 0.38653 + 1.80892I
b = 0.64312 + 1.34017I
12.8350 7.3215I 0
u = 1.73510 + 0.10150I
a = 0.37724 + 1.76762I
b = 0.69739 + 1.37855I
14.1294 + 13.1902I 0
u = 1.73510 0.10150I
a = 0.37724 1.76762I
b = 0.69739 1.37855I
14.1294 13.1902I 0
u = 1.73884 + 0.05594I
a = 0.26375 1.92837I
b = 0.39367 1.37924I
14.8035 + 3.9179I 0
u = 1.73884 0.05594I
a = 0.26375 + 1.92837I
b = 0.39367 + 1.37924I
14.8035 3.9179I 0
u = 1.75253 + 0.07823I
a = 0.27989 + 1.81978I
b = 0.53764 + 1.48090I
19.6252 + 6.5170I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.75253 0.07823I
a = 0.27989 1.81978I
b = 0.53764 1.48090I
19.6252 6.5170I 0
u = 1.75789 + 0.04187I
a = 0.16460 + 1.90001I
b = 0.29057 + 1.50492I
17.1812 0.7272I 0
u = 1.75789 0.04187I
a = 0.16460 1.90001I
b = 0.29057 1.50492I
17.1812 + 0.7272I 0
u = 0.168072
a = 3.39312
b = 0.392381
1.32970 6.13160
10
II. I
u
2
= hb, a
3
a
2
u + a
2
2au + 4a 2u + 3, u
2
u 1i
(i) Arc colorings
a
8
=
0
u
a
11
=
1
0
a
12
=
1
u + 1
a
9
=
u
u 1
a
1
=
u
u
a
4
=
a
0
a
7
=
u
u
a
3
=
au
au a
a
10
=
1
0
a
5
=
a
0
a
6
=
a
2
u + u
u
a
2
=
a
2
u a
2
u
2a
2
u a
2
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 10a
2
u 9a
2
+ 6au + a 3u 21
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
(u
3
u
2
+ 2u 1)
2
c
2
(u
3
+ u
2
1)
2
c
4
, c
10
u
6
c
5
(u
3
u
2
+ 1)
2
c
6
(u
3
+ u
2
+ 2u + 1)
2
c
7
, c
8
, c
9
(u
2
+ u 1)
3
c
11
, c
12
(u
2
u 1)
3
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
6
(y
3
+ 3y
2
+ 2y 1)
2
c
2
, c
5
(y
3
y
2
+ 2y 1)
2
c
4
, c
10
y
6
c
7
, c
8
, c
9
c
11
, c
12
(y
2
3y + 1)
3
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.618034
a = 0.922021
b = 0
2.10041 19.0460
u = 0.618034
a = 0.34801 + 2.11500I
b = 0
2.03717 + 2.82812I 5.93195 1.57712I
u = 0.618034
a = 0.34801 2.11500I
b = 0
2.03717 2.82812I 5.93195 + 1.57712I
u = 1.61803
a = 0.132927 + 0.807858I
b = 0
5.85852 2.82812I 8.44207 + 3.24268I
u = 1.61803
a = 0.132927 0.807858I
b = 0
5.85852 + 2.82812I 8.44207 3.24268I
u = 1.61803
a = 0.352181
b = 0
9.99610 25.2060
14
III. I
u
3
= hb + 1, a, u + 1i
(i) Arc colorings
a
8
=
0
1
a
11
=
1
0
a
12
=
1
1
a
9
=
1
0
a
1
=
0
1
a
4
=
0
1
a
7
=
1
1
a
3
=
1
2
a
10
=
1
1
a
5
=
1
2
a
6
=
0
1
a
2
=
1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 18
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
c
5
, c
6
, c
7
c
8
, c
9
, c
11
c
12
u + 1
c
4
, c
10
u 1
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
6
c
7
, c
8
, c
9
c
10
, c
11
, c
12
y 1
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0
b = 1.00000
4.93480 18.0000
18
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u + 1)(u
3
u
2
+ 2u 1)
2
(u
54
+ 18u
53
+ ··· + 28u + 1)
c
2
(u + 1)(u
3
+ u
2
1)
2
(u
54
+ 2u
53
+ ··· 14u
2
+ 1)
c
3
(u + 1)(u
3
u
2
+ 2u 1)
2
(u
54
4u
53
+ ··· 2672u + 433)
c
4
, c
10
u
6
(u 1)(u
54
+ 2u
53
+ ··· 224u 64)
c
5
(u + 1)(u
3
u
2
+ 1)
2
(u
54
+ 2u
53
+ ··· 14u
2
+ 1)
c
6
(u + 1)(u
3
+ u
2
+ 2u + 1)
2
(u
54
+ 18u
53
+ ··· + 28u + 1)
c
7
, c
8
, c
9
(u + 1)(u
2
+ u 1)
3
(u
54
+ 3u
53
+ ··· + 3u 1)
c
11
, c
12
(u + 1)(u
2
u 1)
3
(u
54
+ 3u
53
+ ··· + 3u 1)
19
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
6
(y 1)(y
3
+ 3y
2
+ 2y 1)
2
(y
54
+ 38y
53
+ ··· 252y + 1)
c
2
, c
5
(y 1)(y
3
y
2
+ 2y 1)
2
(y
54
18y
53
+ ··· 28y + 1)
c
3
(y 1)(y
3
+ 3y
2
+ 2y 1)
2
(y
54
22y
53
+ ··· 7170760y + 187489)
c
4
, c
10
y
6
(y 1)(y
54
+ 36y
53
+ ··· 1024y + 4096)
c
7
, c
8
, c
9
c
11
, c
12
(y 1)(y
2
3y + 1)
3
(y
54
73y
53
+ ··· 33y + 1)
20