12a
0237
(K12a
0237
)
A knot diagram
1
Linearized knot diagam
3 6 7 10 2 5 11 12 1 4 9 8
Solving Sequence
2,5
6 3 7
1,10
4 11 8 9 12
c
5
c
2
c
6
c
1
c
4
c
10
c
7
c
9
c
12
c
3
, c
8
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h19u
88
+ 68u
87
+ ··· + 2b 19, 41u
88
+ 118u
87
+ ··· + 4a 37, u
89
+ 4u
88
+ ··· 2u 1i
I
u
2
= hb, u
2
+ a u, u
3
u
2
+ 1i
I
u
3
= hb, u
2
a + a
2
+ 2au + u
2
a 2u + 2, u
3
u
2
+ 1i
* 3 irreducible components of dim
C
= 0, with total 98 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h19u
88
+ 68u
87
+ · · · + 2b 19, 41u
88
+ 118u
87
+ · · · + 4a 37, u
89
+
4u
88
+ · · · 2u 1i
(i) Arc colorings
a
2
=
0
u
a
5
=
1
0
a
6
=
1
u
2
a
3
=
u
u
3
+ u
a
7
=
u
2
+ 1
u
2
a
1
=
u
3
u
5
u
3
+ u
a
10
=
10.2500u
88
29.5000u
87
+ ··· + 19.7500u + 9.25000
19
2
u
88
34u
87
+ ··· +
25
2
u +
19
2
a
4
=
u
7
2u
5
+ 2u
3
2u
u
7
+ u
5
2u
3
+ u
a
11
=
7
4
u
88
13
2
u
87
+ ··· +
45
4
u +
15
4
11
2
u
88
17u
87
+ ··· +
11
2
u +
9
2
a
8
=
1
4
u
86
3
4
u
85
+ ···
9
2
u
1
4
u
19
3u
17
+ ··· + 4u
2
+ u
a
9
=
4u
88
31
4
u
87
+ ··· +
45
4
u +
7
4
10u
88
141
4
u
87
+ ··· +
49
4
u + 10
a
12
=
2.75000u
88
10.2500u
87
+ ··· + 5.50000u + 3.75000
3
4
u
88
3u
87
+ ··· +
7
4
u +
3
4
(ii) Obstruction class = 1
(iii) Cusp Shapes =
21
4
u
88
3
2
u
87
+ ··· +
3
4
u
43
2
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
u
89
+ 30u
88
+ ··· + 22u + 1
c
2
, c
5
u
89
+ 4u
88
+ ··· 2u 1
c
3
u
89
4u
88
+ ··· + 239908u 33529
c
4
, c
10
u
89
+ u
88
+ ··· 512u 512
c
7
, c
9
u
89
+ 4u
88
+ ··· + 1894u 1153
c
8
, c
11
, c
12
u
89
4u
88
+ ··· + 6u 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
89
+ 62y
88
+ ··· + 22y 1
c
2
, c
5
y
89
30y
88
+ ··· + 22y 1
c
3
y
89
22y
88
+ ··· + 45929667714y 1124193841
c
4
, c
10
y
89
+ 49y
88
+ ··· 1441792y 262144
c
7
, c
9
y
89
62y
88
+ ··· + 27110742y 1329409
c
8
, c
11
, c
12
y
89
+ 74y
88
+ ··· + 30y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.665098 + 0.736201I
a = 2.04567 + 0.09619I
b = 1.031150 0.413779I
3.81291 + 4.32866I 0
u = 0.665098 0.736201I
a = 2.04567 0.09619I
b = 1.031150 + 0.413779I
3.81291 4.32866I 0
u = 0.657778 + 0.734759I
a = 0.725421 + 0.405756I
b = 0.402837 1.044420I
0.93377 2.14563I 0
u = 0.657778 0.734759I
a = 0.725421 0.405756I
b = 0.402837 + 1.044420I
0.93377 + 2.14563I 0
u = 0.980843 + 0.086293I
a = 0.70129 2.02231I
b = 0.291124 0.918013I
1.33318 3.91642I 0
u = 0.980843 0.086293I
a = 0.70129 + 2.02231I
b = 0.291124 + 0.918013I
1.33318 + 3.91642I 0
u = 0.622649 + 0.814057I
a = 0.871261 + 0.985715I
b = 0.515547 1.251660I
0.49843 1.88979I 0
u = 0.622649 0.814057I
a = 0.871261 0.985715I
b = 0.515547 + 1.251660I
0.49843 + 1.88979I 0
u = 0.768023 + 0.686722I
a = 0.724642 0.578489I
b = 0.323205 0.806686I
5.23614 + 4.30736I 0
u = 0.768023 0.686722I
a = 0.724642 + 0.578489I
b = 0.323205 + 0.806686I
5.23614 4.30736I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.03188
a = 0.0355121
b = 1.11414
5.58476 0
u = 1.034010 + 0.032699I
a = 0.23039 + 1.73297I
b = 0.120130 + 1.118900I
4.50330 1.81687I 0
u = 1.034010 0.032699I
a = 0.23039 1.73297I
b = 0.120130 1.118900I
4.50330 + 1.81687I 0
u = 1.035150 + 0.037143I
a = 0.0343861 0.0464883I
b = 1.122200 + 0.136653I
1.64597 + 4.03937I 0
u = 1.035150 0.037143I
a = 0.0343861 + 0.0464883I
b = 1.122200 0.136653I
1.64597 4.03937I 0
u = 0.670295 + 0.692497I
a = 1.99520 + 0.06922I
b = 0.983619 + 0.337300I
0.556520 + 0.407753I 0
u = 0.670295 0.692497I
a = 1.99520 0.06922I
b = 0.983619 0.337300I
0.556520 0.407753I 0
u = 0.708378 + 0.649385I
a = 0.392593 + 0.131712I
b = 0.289547 + 0.912350I
0.026352 + 1.300830I 0
u = 0.708378 0.649385I
a = 0.392593 0.131712I
b = 0.289547 0.912350I
0.026352 1.300830I 0
u = 0.703613 + 0.778044I
a = 1.216460 0.392276I
b = 0.559424 + 0.979921I
7.16499 3.56308I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.703613 0.778044I
a = 1.216460 + 0.392276I
b = 0.559424 0.979921I
7.16499 + 3.56308I 0
u = 0.640493 + 0.833726I
a = 1.05340 1.04636I
b = 0.603287 + 1.253220I
3.50348 6.24276I 0
u = 0.640493 0.833726I
a = 1.05340 + 1.04636I
b = 0.603287 1.253220I
3.50348 + 6.24276I 0
u = 0.653882 + 0.843277I
a = 1.17714 + 1.06230I
b = 0.660390 1.239850I
1.16258 10.50880I 0
u = 0.653882 0.843277I
a = 1.17714 1.06230I
b = 0.660390 + 1.239850I
1.16258 + 10.50880I 0
u = 0.698557 + 0.606933I
a = 1.92976 0.37749I
b = 0.915231 0.247432I
2.82781 3.35710I 0
u = 0.698557 0.606933I
a = 1.92976 + 0.37749I
b = 0.915231 + 0.247432I
2.82781 + 3.35710I 0
u = 0.898385 + 0.216130I
a = 0.191622 + 0.064917I
b = 0.615325 0.618028I
2.07941 + 0.28742I 0
u = 0.898385 0.216130I
a = 0.191622 0.064917I
b = 0.615325 + 0.618028I
2.07941 0.28742I 0
u = 0.814305 + 0.722904I
a = 1.196290 + 0.024448I
b = 0.627639 0.337419I
3.08933 1.87082I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.814305 0.722904I
a = 1.196290 0.024448I
b = 0.627639 + 0.337419I
3.08933 + 1.87082I 0
u = 0.778626 + 0.785998I
a = 1.49237 0.51937I
b = 0.712326 + 0.642047I
8.26445 1.33060I 0
u = 0.778626 0.785998I
a = 1.49237 + 0.51937I
b = 0.712326 0.642047I
8.26445 + 1.33060I 0
u = 1.108700 + 0.091677I
a = 0.537648 + 1.228530I
b = 0.38014 + 1.38254I
6.81978 1.15961I 0
u = 1.108700 0.091677I
a = 0.537648 1.228530I
b = 0.38014 1.38254I
6.81978 + 1.15961I 0
u = 1.110290 + 0.116335I
a = 0.669920 1.203260I
b = 0.48155 1.36931I
10.06680 5.64201I 0
u = 1.110290 0.116335I
a = 0.669920 + 1.203260I
b = 0.48155 + 1.36931I
10.06680 + 5.64201I 0
u = 1.108410 + 0.135230I
a = 0.76874 + 1.19898I
b = 0.55540 + 1.34349I
5.55538 10.02820I 0
u = 1.108410 0.135230I
a = 0.76874 1.19898I
b = 0.55540 1.34349I
5.55538 + 10.02820I 0
u = 1.030150 + 0.494674I
a = 0.876736 0.166610I
b = 0.335632 + 1.344360I
3.37677 3.18871I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.030150 0.494674I
a = 0.876736 + 0.166610I
b = 0.335632 1.344360I
3.37677 + 3.18871I 0
u = 0.942079 + 0.666791I
a = 1.47608 1.11163I
b = 0.189828 0.916225I
4.69575 + 0.92514I 0
u = 0.942079 0.666791I
a = 1.47608 + 1.11163I
b = 0.189828 + 0.916225I
4.69575 0.92514I 0
u = 0.910609 + 0.709843I
a = 0.648660 + 0.795037I
b = 0.625327 0.220194I
2.79557 3.60260I 0
u = 0.910609 0.709843I
a = 0.648660 0.795037I
b = 0.625327 + 0.220194I
2.79557 + 3.60260I 0
u = 1.032420 + 0.521949I
a = 0.998098 + 0.125232I
b = 0.244161 1.372840I
7.60185 + 1.18273I 0
u = 1.032420 0.521949I
a = 0.998098 0.125232I
b = 0.244161 + 1.372840I
7.60185 1.18273I 0
u = 0.977260 + 0.642109I
a = 1.13887 + 1.21202I
b = 1.107430 0.177555I
1.95629 1.63466I 0
u = 0.977260 0.642109I
a = 1.13887 1.21202I
b = 1.107430 + 0.177555I
1.95629 + 1.63466I 0
u = 1.033870 + 0.550633I
a = 1.139480 0.068932I
b = 0.139191 + 1.390740I
4.01536 + 5.61146I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.033870 0.550633I
a = 1.139480 + 0.068932I
b = 0.139191 1.390740I
4.01536 5.61146I 0
u = 0.977323 + 0.651527I
a = 1.57298 + 0.67143I
b = 0.215794 + 1.090100I
0.81137 + 3.80562I 0
u = 0.977323 0.651527I
a = 1.57298 0.67143I
b = 0.215794 1.090100I
0.81137 3.80562I 0
u = 0.818100
a = 0.0728908
b = 0.394708
1.33047 6.26310
u = 0.863634 + 0.821328I
a = 0.89126 + 1.12068I
b = 0.229454 0.915155I
5.01336 6.73646I 0
u = 0.863634 0.821328I
a = 0.89126 1.12068I
b = 0.229454 + 0.915155I
5.01336 + 6.73646I 0
u = 0.991482 + 0.665626I
a = 1.04688 1.31650I
b = 1.124220 + 0.305151I
1.51618 5.67493I 0
u = 0.991482 0.665626I
a = 1.04688 + 1.31650I
b = 1.124220 0.305151I
1.51618 + 5.67493I 0
u = 0.883931 + 0.808710I
a = 0.629642 1.130690I
b = 0.053245 + 0.858605I
0.93988 3.01821I 0
u = 0.883931 0.808710I
a = 0.629642 + 1.130690I
b = 0.053245 0.858605I
0.93988 + 3.01821I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.953916 + 0.743058I
a = 0.432867 1.276900I
b = 0.701691 + 0.601056I
7.73056 4.43400I 0
u = 0.953916 0.743058I
a = 0.432867 + 1.276900I
b = 0.701691 0.601056I
7.73056 + 4.43400I 0
u = 1.002630 + 0.678349I
a = 1.92587 0.55060I
b = 0.388123 1.152830I
0.09348 + 7.55688I 0
u = 1.002630 0.678349I
a = 1.92587 + 0.55060I
b = 0.388123 + 1.152830I
0.09348 7.55688I 0
u = 1.001160 + 0.681562I
a = 0.98743 + 1.40192I
b = 1.139070 0.401331I
2.80943 9.75712I 0
u = 1.001160 0.681562I
a = 0.98743 1.40192I
b = 1.139070 + 0.401331I
2.80943 + 9.75712I 0
u = 0.908087 + 0.806141I
a = 0.400070 + 1.283120I
b = 0.142738 0.898129I
4.87611 + 0.66838I 0
u = 0.908087 0.806141I
a = 0.400070 1.283120I
b = 0.142738 + 0.898129I
4.87611 0.66838I 0
u = 0.334142 + 0.709466I
a = 0.708885 1.004210I
b = 0.235700 + 1.254950I
2.03228 0.98158I 8.15244 + 0.32512I
u = 0.334142 0.709466I
a = 0.708885 + 1.004210I
b = 0.235700 1.254950I
2.03228 + 0.98158I 8.15244 0.32512I
11
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.994558 + 0.708318I
a = 2.21234 + 0.70707I
b = 0.527032 + 1.043990I
6.28153 + 9.19093I 0
u = 0.994558 0.708318I
a = 2.21234 0.70707I
b = 0.527032 1.043990I
6.28153 9.19093I 0
u = 0.280545 + 0.714141I
a = 0.927041 + 1.036670I
b = 0.357240 1.246760I
5.44107 + 3.27728I 11.28302 3.52350I
u = 0.280545 0.714141I
a = 0.927041 1.036670I
b = 0.357240 + 1.246760I
5.44107 3.27728I 11.28302 + 3.52350I
u = 0.240868 + 0.719772I
a = 1.08805 1.05758I
b = 0.449716 + 1.235920I
1.06164 + 7.50684I 6.60333 5.97406I
u = 0.240868 0.719772I
a = 1.08805 + 1.05758I
b = 0.449716 1.235920I
1.06164 7.50684I 6.60333 + 5.97406I
u = 1.038970 + 0.698574I
a = 2.19115 0.26374I
b = 0.56143 1.31339I
1.75012 + 7.56949I 0
u = 1.038970 0.698574I
a = 2.19115 + 0.26374I
b = 0.56143 + 1.31339I
1.75012 7.56949I 0
u = 1.040700 + 0.712007I
a = 2.31121 + 0.26737I
b = 0.64332 + 1.30166I
4.71825 + 12.02680I 0
u = 1.040700 0.712007I
a = 2.31121 0.26737I
b = 0.64332 1.30166I
4.71825 12.02680I 0
12
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.039460 + 0.720956I
a = 2.38842 0.28813I
b = 0.69543 1.27859I
0.0131 + 16.3522I 0
u = 1.039460 0.720956I
a = 2.38842 + 0.28813I
b = 0.69543 + 1.27859I
0.0131 16.3522I 0
u = 0.073739 + 0.505505I
a = 1.62242 + 0.27322I
b = 0.543638 0.715750I
4.54058 + 2.15535I 0.80378 3.90881I
u = 0.073739 0.505505I
a = 1.62242 0.27322I
b = 0.543638 + 0.715750I
4.54058 2.15535I 0.80378 + 3.90881I
u = 0.307440 + 0.321395I
a = 0.802437 + 0.240520I
b = 0.145013 + 0.668762I
0.428923 + 0.936179I 7.41103 7.19001I
u = 0.307440 0.321395I
a = 0.802437 0.240520I
b = 0.145013 0.668762I
0.428923 0.936179I 7.41103 + 7.19001I
u = 0.366466 + 0.234966I
a = 2.82452 0.22452I
b = 0.616795 + 0.063462I
2.51458 3.22716I 0.65676 + 4.62783I
u = 0.366466 0.234966I
a = 2.82452 + 0.22452I
b = 0.616795 0.063462I
2.51458 + 3.22716I 0.65676 4.62783I
u = 0.313100
a = 3.11363
b = 0.504407
1.49459 5.36230
13
II. I
u
2
= hb, u
2
+ a u, u
3
u
2
+ 1i
(i) Arc colorings
a
2
=
0
u
a
5
=
1
0
a
6
=
1
u
2
a
3
=
u
u
2
+ u + 1
a
7
=
u
2
+ 1
u
2
a
1
=
u
2
1
u
2
a
10
=
u
2
+ u
0
a
4
=
1
0
a
11
=
u
2
+ u
0
a
8
=
u
2
u
2
a
9
=
1
u
2
+ 1
a
12
=
u
u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
2
+ 9u 11
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
8
u
3
u
2
+ 2u 1
c
2
, c
7
, c
9
u
3
+ u
2
1
c
4
, c
10
u
3
c
5
u
3
u
2
+ 1
c
6
, c
11
, c
12
u
3
+ u
2
+ 2u + 1
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
6
c
8
, c
11
, c
12
y
3
+ 3y
2
+ 2y 1
c
2
, c
5
, c
7
c
9
y
3
y
2
+ 2y 1
c
4
, c
10
y
3
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.877439 + 0.744862I
a = 0.662359 0.562280I
b = 0
6.04826 5.65624I 3.31813 + 5.39661I
u = 0.877439 0.744862I
a = 0.662359 + 0.562280I
b = 0
6.04826 + 5.65624I 3.31813 5.39661I
u = 0.754878
a = 1.32472
b = 0
2.22691 18.3640
17
III. I
u
3
= hb, u
2
a + a
2
+ 2au + u
2
a 2u + 2, u
3
u
2
+ 1i
(i) Arc colorings
a
2
=
0
u
a
5
=
1
0
a
6
=
1
u
2
a
3
=
u
u
2
+ u + 1
a
7
=
u
2
+ 1
u
2
a
1
=
u
2
1
u
2
a
10
=
a
0
a
4
=
1
0
a
11
=
a
0
a
8
=
au a u + 2
u
2
a
9
=
au
u
2
a + au + a
a
12
=
u
2
a + au + u
2
+ a 2u + 1
u
2
a u
2
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
2
a + au a + 3u 7
18
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
8
(u
3
u
2
+ 2u 1)
2
c
2
, c
7
, c
9
(u
3
+ u
2
1)
2
c
4
, c
10
u
6
c
5
(u
3
u
2
+ 1)
2
c
6
, c
11
, c
12
(u
3
+ u
2
+ 2u + 1)
2
19
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
6
c
8
, c
11
, c
12
(y
3
+ 3y
2
+ 2y 1)
2
c
2
, c
5
, c
7
c
9
(y
3
y
2
+ 2y 1)
2
c
4
, c
10
y
6
20
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.877439 + 0.744862I
a = 0.447279 0.744862I
b = 0
6.04826 2.00317 + 0.50299I
u = 0.877439 + 0.744862I
a = 0.092519 + 0.562280I
b = 0
1.91067 2.82812I 6.28492 + 2.09676I
u = 0.877439 0.744862I
a = 0.447279 + 0.744862I
b = 0
6.04826 2.00317 0.50299I
u = 0.877439 0.744862I
a = 0.092519 0.562280I
b = 0
1.91067 + 2.82812I 6.28492 2.09676I
u = 0.754878
a = 1.53980 + 1.30714I
b = 0
1.91067 2.82812I 10.21191 0.80415I
u = 0.754878
a = 1.53980 1.30714I
b = 0
1.91067 + 2.82812I 10.21191 + 0.80415I
21
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
3
u
2
+ 2u 1)
3
)(u
89
+ 30u
88
+ ··· + 22u + 1)
c
2
((u
3
+ u
2
1)
3
)(u
89
+ 4u
88
+ ··· 2u 1)
c
3
((u
3
u
2
+ 2u 1)
3
)(u
89
4u
88
+ ··· + 239908u 33529)
c
4
, c
10
u
9
(u
89
+ u
88
+ ··· 512u 512)
c
5
((u
3
u
2
+ 1)
3
)(u
89
+ 4u
88
+ ··· 2u 1)
c
6
((u
3
+ u
2
+ 2u + 1)
3
)(u
89
+ 30u
88
+ ··· + 22u + 1)
c
7
, c
9
((u
3
+ u
2
1)
3
)(u
89
+ 4u
88
+ ··· + 1894u 1153)
c
8
((u
3
u
2
+ 2u 1)
3
)(u
89
4u
88
+ ··· + 6u 1)
c
11
, c
12
((u
3
+ u
2
+ 2u + 1)
3
)(u
89
4u
88
+ ··· + 6u 1)
22
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
6
((y
3
+ 3y
2
+ 2y 1)
3
)(y
89
+ 62y
88
+ ··· + 22y 1)
c
2
, c
5
((y
3
y
2
+ 2y 1)
3
)(y
89
30y
88
+ ··· + 22y 1)
c
3
(y
3
+ 3y
2
+ 2y 1)
3
· (y
89
22y
88
+ ··· + 45929667714y 1124193841)
c
4
, c
10
y
9
(y
89
+ 49y
88
+ ··· 1441792y 262144)
c
7
, c
9
((y
3
y
2
+ 2y 1)
3
)(y
89
62y
88
+ ··· + 2.71107 × 10
7
y 1329409)
c
8
, c
11
, c
12
((y
3
+ 3y
2
+ 2y 1)
3
)(y
89
+ 74y
88
+ ··· + 30y 1)
23