10
19
(K10a
108
)
A knot diagram
1
Linearized knot diagam
7 8 6 9 10 1 2 5 4 3
Solving Sequence
4,10
9 5 6 3 1 8 2 7
c
9
c
4
c
5
c
3
c
10
c
8
c
2
c
7
c
1
, c
6
Ideals for irreducible components
2
of X
par
I
u
1
= hu
25
u
24
+ ··· u + 1i
* 1 irreducible components of dim
C
= 0, with total 25 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
25
u
24
+ · · · u + 1i
(i) Arc colorings
a
4
=
0
u
a
10
=
1
0
a
9
=
1
u
2
a
5
=
u
u
3
+ u
a
6
=
u
3
+ 2u
u
3
+ u
a
3
=
u
7
4u
5
4u
3
u
7
3u
5
2u
3
+ u
a
1
=
u
14
+ 7u
12
+ 18u
10
+ 19u
8
+ 4u
6
4u
4
+ 1
u
14
+ 6u
12
+ 13u
10
+ 10u
8
2u
6
4u
4
+ u
2
a
8
=
u
2
+ 1
u
4
+ 2u
2
a
2
=
u
13
+ 6u
11
+ 13u
9
+ 10u
7
2u
5
4u
3
+ u
u
15
+ 7u
13
+ 18u
11
+ 19u
9
+ 4u
7
4u
5
+ u
a
7
=
u
24
11u
22
+ ··· + 5u
4
+ 1
u
24
+ u
23
+ ··· 2u
3
+ 1
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 4u
24
+ 4u
23
48u
22
+ 40u
21
240u
20
+ 164u
19
636u
18
+ 340u
17
920u
16
+ 332u
15
620u
14
+36u
13
12u
12
184u
11
+140u
10
80u
9
56u
8
+36u
7
60u
6
+12u
4
12u
3
+4u
2
+2
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
6
c
7
u
25
u
24
+ ··· + u + 1
c
3
u
25
+ 5u
24
+ ··· 47u 11
c
4
, c
8
, c
9
u
25
u
24
+ ··· u + 1
c
5
u
25
+ u
24
+ ··· + 3u + 2
c
10
u
25
7u
24
+ ··· + 41u 7
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
7
y
25
29y
24
+ ··· + y 1
c
3
y
25
+ 11y
24
+ ··· 827y 121
c
4
, c
8
, c
9
y
25
+ 23y
24
+ ··· + y 1
c
5
y
25
+ 3y
24
+ ··· 31y 4
c
10
y
25
5y
24
+ ··· + 197y 49
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.083328 + 1.136530I
1.41378 + 1.61686I 0.87509 4.54712I
u = 0.083328 1.136530I
1.41378 1.61686I 0.87509 + 4.54712I
u = 0.226231 + 1.195340I
7.69988 3.32898I 4.74899 + 3.47484I
u = 0.226231 1.195340I
7.69988 + 3.32898I 4.74899 3.47484I
u = 0.700117 + 0.334469I
7.82366 + 6.30957I 3.83367 5.57691I
u = 0.700117 0.334469I
7.82366 6.30957I 3.83367 + 5.57691I
u = 0.461544 + 0.584785I
8.81533 2.31852I 6.07988 0.26267I
u = 0.461544 0.584785I
8.81533 + 2.31852I 6.07988 + 0.26267I
u = 0.652943 + 0.287492I
0.14392 4.18290I 0.98515 + 7.72660I
u = 0.652943 0.287492I
0.14392 + 4.18290I 0.98515 7.72660I
u = 0.677492
4.07756 0.217760
u = 0.580674 + 0.194968I
1.16471 + 0.92486I 4.08147 1.66278I
u = 0.580674 0.194968I
1.16471 0.92486I 4.08147 + 1.66278I
u = 0.224985 + 1.385120I
3.90410 + 3.87050I 2.00448 2.43861I
u = 0.224985 1.385120I
3.90410 3.87050I 2.00448 + 2.43861I
u = 0.15893 + 1.40888I
6.93669 1.11527I 8.41631 0.71281I
u = 0.15893 1.40888I
6.93669 + 1.11527I 8.41631 + 0.71281I
u = 0.333053 + 0.458284I
1.19946 + 0.82124I 4.96410 1.46331I
u = 0.333053 0.458284I
1.19946 0.82124I 4.96410 + 1.46331I
u = 0.25437 + 1.41342I
5.58181 7.50021I 5.62573 + 7.29113I
u = 0.25437 1.41342I
5.58181 + 7.50021I 5.62573 7.29113I
u = 0.26972 + 1.43636I
13.4988 + 9.8448I 7.88321 5.59341I
u = 0.26972 1.43636I
13.4988 9.8448I 7.88321 + 5.59341I
u = 0.14391 + 1.45939I
15.3081 0.2303I 9.77375 0.13265I
u = 0.14391 1.45939I
15.3081 + 0.2303I 9.77375 + 0.13265I
5
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
6
c
7
u
25
u
24
+ ··· + u + 1
c
3
u
25
+ 5u
24
+ ··· 47u 11
c
4
, c
8
, c
9
u
25
u
24
+ ··· u + 1
c
5
u
25
+ u
24
+ ··· + 3u + 2
c
10
u
25
7u
24
+ ··· + 41u 7
6
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
7
y
25
29y
24
+ ··· + y 1
c
3
y
25
+ 11y
24
+ ··· 827y 121
c
4
, c
8
, c
9
y
25
+ 23y
24
+ ··· + y 1
c
5
y
25
+ 3y
24
+ ··· 31y 4
c
10
y
25
5y
24
+ ··· + 197y 49
7