12a
0241
(K12a
0241
)
A knot diagram
1
Linearized knot diagam
3 6 7 10 2 1 4 12 11 5 9 8
Solving Sequence
5,11
10 4 9 12 8 1 7 3 2 6
c
10
c
4
c
9
c
11
c
8
c
12
c
7
c
3
c
1
c
6
c
2
, c
5
Ideals for irreducible components
2
of X
par
I
u
1
= hu
63
u
62
+ ··· + 2u
2
1i
* 1 irreducible components of dim
C
= 0, with total 63 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
63
u
62
+ · · · + 2u
2
1i
(i) Arc colorings
a
5
=
0
u
a
11
=
1
0
a
10
=
1
u
2
a
4
=
u
u
3
+ u
a
9
=
u
2
+ 1
u
2
a
12
=
u
4
u
2
+ 1
u
4
a
8
=
u
6
+ u
4
2u
2
+ 1
u
6
+ u
2
a
1
=
u
8
u
6
+ 3u
4
2u
2
+ 1
u
8
2u
4
a
7
=
u
10
+ u
8
4u
6
+ 3u
4
3u
2
+ 1
u
12
+ 2u
10
4u
8
+ 6u
6
3u
4
+ 2u
2
a
3
=
u
19
2u
17
+ 8u
15
12u
13
+ 21u
11
22u
9
+ 20u
7
12u
5
+ 5u
3
2u
u
21
3u
19
+ ··· 3u
3
+ u
a
2
=
u
48
5u
46
+ ··· 4u
2
+ 1
u
50
6u
48
+ ··· 10u
4
+ u
2
a
6
=
u
28
3u
26
+ ··· 5u
2
+ 1
u
28
+ 2u
26
+ ··· 3u
4
+ 2u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
62
28u
60
+ ··· + 16u + 6
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
63
+ 29u
62
+ ··· + 4u + 1
c
2
, c
5
u
63
+ u
62
+ ··· + 2u 1
c
3
, c
7
u
63
u
62
+ ··· + 420u 97
c
4
, c
10
u
63
u
62
+ ··· + 2u
2
1
c
6
u
63
+ 3u
62
+ ··· + 34u 5
c
8
, c
9
, c
11
c
12
u
63
13u
62
+ ··· + 4u 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
63
+ 11y
62
+ ··· + 16y 1
c
2
, c
5
y
63
29y
62
+ ··· + 4y 1
c
3
, c
7
y
63
37y
62
+ ··· 58340y 9409
c
4
, c
10
y
63
13y
62
+ ··· + 4y 1
c
6
y
63
+ 7y
62
+ ··· 164y 25
c
8
, c
9
, c
11
c
12
y
63
+ 75y
62
+ ··· 8y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.906180 + 0.422177I
1.99168 + 1.38995I 8.07559 + 0.94279I
u = 0.906180 0.422177I
1.99168 1.38995I 8.07559 0.94279I
u = 0.784033 + 0.600648I
4.27567 + 5.81688I 0.70813 8.29875I
u = 0.784033 0.600648I
4.27567 5.81688I 0.70813 + 8.29875I
u = 0.909103 + 0.447406I
3.51366 + 3.59358I 10.41272 6.28502I
u = 0.909103 0.447406I
3.51366 3.59358I 10.41272 + 6.28502I
u = 0.886115 + 0.506891I
1.82319 4.09825I 2.15651 + 6.10462I
u = 0.886115 0.506891I
1.82319 + 4.09825I 2.15651 6.10462I
u = 0.922893 + 0.488111I
2.97083 + 6.11707I 9.16199 6.56976I
u = 0.922893 0.488111I
2.97083 6.11707I 9.16199 + 6.56976I
u = 0.930909 + 0.500771I
0.97651 11.21790I 6.00000 + 10.77314I
u = 0.930909 0.500771I
0.97651 + 11.21790I 6.00000 10.77314I
u = 0.693202 + 0.621062I
4.56079 1.25575I 2.19329 + 0.63310I
u = 0.693202 0.621062I
4.56079 + 1.25575I 2.19329 0.63310I
u = 0.928590 + 0.045314I
4.01932 + 6.32514I 11.57164 5.86598I
u = 0.928590 0.045314I
4.01932 6.32514I 11.57164 + 5.86598I
u = 0.922742 + 0.024554I
5.80192 1.27063I 14.7143 + 0.7560I
u = 0.922742 0.024554I
5.80192 + 1.27063I 14.7143 0.7560I
u = 0.733886 + 0.550039I
1.66010 2.08982I 2.72200 + 4.60622I
u = 0.733886 0.550039I
1.66010 + 2.08982I 2.72200 4.60622I
u = 0.778547 + 0.292819I
0.09263 3.54491I 8.23338 + 8.37976I
u = 0.778547 0.292819I
0.09263 + 3.54491I 8.23338 8.37976I
u = 0.817837
1.00618 9.44630
u = 0.524223 + 0.608616I
2.97072 0.11505I 1.75022 + 0.66782I
u = 0.524223 0.608616I
2.97072 + 0.11505I 1.75022 0.66782I
u = 0.453370 + 0.659277I
0.53569 + 6.90071I 1.90400 5.03856I
u = 0.453370 0.659277I
0.53569 6.90071I 1.90400 + 5.03856I
u = 0.438773 + 0.630314I
1.46155 1.93140I 5.21037 + 0.69413I
u = 0.438773 0.630314I
1.46155 + 1.93140I 5.21037 0.69413I
u = 0.884768 + 0.873290I
6.09691 + 4.77546I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.884768 0.873290I
6.09691 4.77546I 0
u = 0.881328 + 0.885625I
4.93494 + 0.19327I 0
u = 0.881328 0.885625I
4.93494 0.19327I 0
u = 0.881069 + 0.903523I
6.02303 + 2.71306I 0
u = 0.881069 0.903523I
6.02303 2.71306I 0
u = 0.880732 + 0.909053I
8.19478 7.84444I 0
u = 0.880732 0.909053I
8.19478 + 7.84444I 0
u = 0.892755 + 0.903388I
10.84960 0.25881I 0
u = 0.892755 0.903388I
10.84960 + 0.25881I 0
u = 0.945495 + 0.850520I
5.90653 + 1.61727I 0
u = 0.945495 0.850520I
5.90653 1.61727I 0
u = 0.954008 + 0.855513I
4.70515 6.63865I 0
u = 0.954008 0.855513I
4.70515 + 6.63865I 0
u = 0.927641 + 0.889208I
10.23000 + 3.28333I 0
u = 0.927641 0.889208I
10.23000 3.28333I 0
u = 0.924436 + 0.899708I
13.41990 + 0.59197I 0
u = 0.924436 0.899708I
13.41990 0.59197I 0
u = 0.702440 + 0.074381I
0.950672 + 0.027060I 11.34231 0.59705I
u = 0.702440 0.074381I
0.950672 0.027060I 11.34231 + 0.59705I
u = 0.937504 + 0.893407I
13.3778 7.2055I 0
u = 0.937504 0.893407I
13.3778 + 7.2055I 0
u = 0.965088 + 0.864759I
5.75398 9.24348I 0
u = 0.965088 0.864759I
5.75398 + 9.24348I 0
u = 0.958623 + 0.872225I
10.63780 + 6.81425I 0
u = 0.958623 0.872225I
10.63780 6.81425I 0
u = 0.968793 + 0.867363I
7.9118 + 14.4004I 0
u = 0.968793 0.867363I
7.9118 14.4004I 0
u = 0.350486 + 0.566383I
1.88232 + 0.20853I 5.90645 0.29596I
u = 0.350486 0.566383I
1.88232 0.20853I 5.90645 + 0.29596I
u = 0.285841 + 0.571386I
0.19917 5.00950I 2.45073 + 5.54298I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.285841 0.571386I
0.19917 + 5.00950I 2.45073 5.54298I
u = 0.132000 + 0.431030I
1.65849 + 1.14871I 1.62308 0.85275I
u = 0.132000 0.431030I
1.65849 1.14871I 1.62308 + 0.85275I
7
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
u
63
+ 29u
62
+ ··· + 4u + 1
c
2
, c
5
u
63
+ u
62
+ ··· + 2u 1
c
3
, c
7
u
63
u
62
+ ··· + 420u 97
c
4
, c
10
u
63
u
62
+ ··· + 2u
2
1
c
6
u
63
+ 3u
62
+ ··· + 34u 5
c
8
, c
9
, c
11
c
12
u
63
13u
62
+ ··· + 4u 1
8
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
y
63
+ 11y
62
+ ··· + 16y 1
c
2
, c
5
y
63
29y
62
+ ··· + 4y 1
c
3
, c
7
y
63
37y
62
+ ··· 58340y 9409
c
4
, c
10
y
63
13y
62
+ ··· + 4y 1
c
6
y
63
+ 7y
62
+ ··· 164y 25
c
8
, c
9
, c
11
c
12
y
63
+ 75y
62
+ ··· 8y 1
9