12a
0245
(K12a
0245
)
A knot diagram
1
Linearized knot diagam
3 6 7 10 2 1 11 5 12 8 4 9
Solving Sequence
4,10 5,12
9 1 8 11 7 3 2 6
c
4
c
9
c
12
c
8
c
11
c
7
c
3
c
1
c
6
c
2
, c
5
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−1.30829 × 10
182
u
45
+ 3.21690 × 10
182
u
44
+ ··· + 2.91664 × 10
185
b + 1.81261 × 10
186
,
2.74927 × 10
182
u
45
1.01973 × 10
183
u
44
+ ··· + 5.83327 × 10
185
a 1.27181 × 10
187
,
u
46
3u
45
+ ··· 30720u + 8192i
I
u
2
= h−u
31
u
30
+ ··· a 2, 2u
31
+ u
30
+ ··· + a
2
+ 3, u
32
+ u
31
+ ··· + 2u + 1i
I
u
3
= hu
2
a u
3
u
2
+ b a, a
2
au u, u
4
+ u
3
+ 1i
I
u
4
= hb + 1, a
2
a + 2, u 1i
I
u
5
= hb u 1, a 1, u
2
+ 1i
I
v
1
= ha, v
5
+ 2v
4
16v
2
+ 64b 16v + 32, v
6
+ 2v
5
16v
3
16v
2
+ 32v + 64i
* 6 irreducible components of dim
C
= 0, with total 128 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−1.31 × 10
182
u
45
+ 3.22 × 10
182
u
44
+ · · · + 2.92 × 10
185
b + 1.81 ×
10
186
, 2.75 × 10
182
u
45
1.02 × 10
183
u
44
+ · · · + 5.83 × 10
185
a 1.27 ×
10
187
, u
46
3u
45
+ · · · 30720u + 8192i
(i) Arc colorings
a
4
=
1
0
a
10
=
0
u
a
5
=
1
u
2
a
12
=
0.000471309u
45
+ 0.00174813u
44
+ ··· 24.9228u + 21.8026
0.000448560u
45
0.00110295u
44
+ ··· + 13.9436u 6.21474
a
9
=
0.000919870u
45
0.00285108u
44
+ ··· + 38.8664u 28.0174
0.000859527u
45
0.00194940u
44
+ ··· + 24.2892u 6.96411
a
1
=
0.000531652u
45
+ 0.00264982u
44
+ ··· 40.4999u + 42.8559
0.000478275u
45
0.00119240u
44
+ ··· + 14.5999u 7.27524
a
8
=
0.000471309u
45
0.00174813u
44
+ ··· + 24.9228u 21.8026
0.000991814u
45
0.00227861u
44
+ ··· + 28.0713u 8.95256
a
11
=
0.000919870u
45
+ 0.00285108u
44
+ ··· 38.8664u + 28.0174
0.000448560u
45
0.00110295u
44
+ ··· + 13.9436u 6.21474
a
7
=
0.000531652u
45
0.00264982u
44
+ ··· + 40.4999u 42.8559
0.00185134u
45
0.00422801u
44
+ ··· + 51.3606u 15.9167
a
3
=
0.00115169u
45
0.00185933u
44
+ ··· + 29.6103u + 9.69006
0.00179201u
45
0.00442512u
44
+ ··· + 55.3750u 28.2489
a
2
=
0.000177162u
45
+ 0.00141815u
44
+ ··· 33.1849u + 22.5187
0.000323331u
45
0.00109532u
44
+ ··· + 8.96510u 11.5651
a
6
=
0.00269326u
45
0.00782283u
44
+ ··· + 106.019u 66.8639
0.00167414u
45
+ 0.00452784u
44
+ ··· 49.4479u + 36.0030
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.000526625u
45
0.00139921u
44
+ ··· + 30.9656u + 16.8615
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
46
+ 22u
45
+ ··· + 65u + 16
c
2
, c
5
u
46
+ 2u
45
+ ··· + 15u + 4
c
3
u
46
+ 2u
45
+ ··· + 419884u + 136336
c
4
u
46
+ 3u
45
+ ··· + 30720u + 8192
c
6
u
46
+ 2u
44
+ ··· + 2032u + 448
c
7
, c
9
, c
10
c
12
u
46
+ 6u
45
+ ··· 6u + 1
c
8
, c
11
64(64u
46
96u
45
+ ··· 8u
2
+ 2)
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
46
+ 6y
45
+ ··· + 3391y + 256
c
2
, c
5
y
46
22y
45
+ ··· 65y + 16
c
3
y
46
30y
45
+ ··· 205613722768y + 18587504896
c
4
y
46
11y
45
+ ··· 1572864000y + 67108864
c
6
y
46
+ 4y
45
+ ··· + 910080y + 200704
c
7
, c
9
, c
10
c
12
y
46
+ 26y
45
+ ··· 12y + 1
c
8
, c
11
4096(4096y
46
93184y
45
+ ··· 32y + 4)
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.401792 + 0.789673I
a = 1.034950 + 0.489117I
b = 0.098777 + 0.739250I
3.37451 + 5.47103I 6.94202 5.47084I
u = 0.401792 0.789673I
a = 1.034950 0.489117I
b = 0.098777 0.739250I
3.37451 5.47103I 6.94202 + 5.47084I
u = 0.239618 + 0.727911I
a = 0.877973 + 0.679500I
b = 0.064614 + 0.618606I
1.23789 1.34787I 5.39091 + 2.19254I
u = 0.239618 0.727911I
a = 0.877973 0.679500I
b = 0.064614 0.618606I
1.23789 + 1.34787I 5.39091 2.19254I
u = 0.078679 + 0.719346I
a = 0.451493 + 0.580682I
b = 0.063814 + 0.526016I
0.697121 1.212220I 4.01044 + 6.14816I
u = 0.078679 0.719346I
a = 0.451493 0.580682I
b = 0.063814 0.526016I
0.697121 + 1.212220I 4.01044 6.14816I
u = 0.433643 + 0.566016I
a = 1.33364 + 0.69018I
b = 0.273046 + 0.628978I
4.26962 1.33304I 9.23410 + 6.58879I
u = 0.433643 0.566016I
a = 1.33364 0.69018I
b = 0.273046 0.628978I
4.26962 + 1.33304I 9.23410 6.58879I
u = 0.672328 + 0.122077I
a = 2.03352 + 0.16905I
b = 0.811410 + 0.208117I
1.01846 + 6.05975I 5.32943 7.91016I
u = 0.672328 0.122077I
a = 2.03352 0.16905I
b = 0.811410 0.208117I
1.01846 6.05975I 5.32943 + 7.91016I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.645073 + 0.070271I
a = 2.10420 + 0.11324I
b = 0.777175 + 0.116055I
0.827180 1.119400I 9.81417 + 2.37316I
u = 0.645073 0.070271I
a = 2.10420 0.11324I
b = 0.777175 0.116055I
0.827180 + 1.119400I 9.81417 2.37316I
u = 0.520537 + 0.295551I
a = 0.413738 + 0.318781I
b = 0.371984 + 0.476647I
1.97267 1.37276I 2.57483 + 1.51766I
u = 0.520537 0.295551I
a = 0.413738 0.318781I
b = 0.371984 0.476647I
1.97267 + 1.37276I 2.57483 1.51766I
u = 0.502594 + 0.228503I
a = 2.11877 + 0.56848I
b = 0.525503 + 0.309703I
3.39297 0.50689I 1.54331 8.55618I
u = 0.502594 0.228503I
a = 2.11877 0.56848I
b = 0.525503 0.309703I
3.39297 + 0.50689I 1.54331 + 8.55618I
u = 0.532699 + 0.084051I
a = 0.573143 + 0.199439I
b = 0.707726 + 0.345489I
0.46138 + 5.41462I 2.43162 4.62417I
u = 0.532699 0.084051I
a = 0.573143 0.199439I
b = 0.707726 0.345489I
0.46138 5.41462I 2.43162 + 4.62417I
u = 0.478597 + 0.061203I
a = 0.523519 + 0.112067I
b = 0.641497 + 0.184230I
1.49547 0.77471I 6.52139 + 0.61017I
u = 0.478597 0.061203I
a = 0.523519 0.112067I
b = 0.641497 0.184230I
1.49547 + 0.77471I 6.52139 0.61017I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.32298 + 1.00419I
a = 0.244934 0.868893I
b = 1.59181 1.00368I
7.9562 + 18.9510I 0
u = 1.32298 1.00419I
a = 0.244934 + 0.868893I
b = 1.59181 + 1.00368I
7.9562 18.9510I 0
u = 1.36201 + 0.97857I
a = 0.221655 0.833836I
b = 1.46345 0.96268I
4.87739 + 11.08340I 0
u = 1.36201 0.97857I
a = 0.221655 + 0.833836I
b = 1.46345 + 0.96268I
4.87739 11.08340I 0
u = 1.33866 + 1.01035I
a = 0.250581 0.854142I
b = 1.57565 0.95478I
10.1320 13.6218I 0
u = 1.33866 1.01035I
a = 0.250581 + 0.854142I
b = 1.57565 + 0.95478I
10.1320 + 13.6218I 0
u = 1.38555 + 1.03866I
a = 0.272974 0.808895I
b = 1.53500 0.79923I
11.2953 10.4811I 0
u = 1.38555 1.03866I
a = 0.272974 + 0.808895I
b = 1.53500 + 0.79923I
11.2953 + 10.4811I 0
u = 1.57230 + 0.77246I
a = 0.085159 0.690200I
b = 0.913569 0.867748I
0.59144 10.81880I 0
u = 1.57230 0.77246I
a = 0.085159 + 0.690200I
b = 0.913569 + 0.867748I
0.59144 + 10.81880I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.41374 + 1.05421I
a = 0.282174 0.781521I
b = 1.49805 0.71794I
10.12260 + 5.12502I 0
u = 1.41374 1.05421I
a = 0.282174 + 0.781521I
b = 1.49805 + 0.71794I
10.12260 5.12502I 0
u = 1.69696 + 0.85231I
a = 0.124053 0.627843I
b = 0.899624 0.686359I
3.79825 + 6.24987I 0
u = 1.69696 0.85231I
a = 0.124053 + 0.627843I
b = 0.899624 + 0.686359I
3.79825 6.24987I 0
u = 1.88174 + 0.67526I
a = 0.052037 0.556937I
b = 0.669760 0.655489I
0.19317 2.26026I 0
u = 1.88174 0.67526I
a = 0.052037 + 0.556937I
b = 0.669760 + 0.655489I
0.19317 + 2.26026I 0
u = 1.15493 + 1.84484I
a = 0.522503 0.223781I
b = 0.696453 + 0.457576I
6.20944 9.54624I 0
u = 1.15493 1.84484I
a = 0.522503 + 0.223781I
b = 0.696453 0.457576I
6.20944 + 9.54624I 0
u = 1.71157 + 1.45820I
a = 0.345297 0.457141I
b = 0.959259 0.047672I
9.03151 + 5.36539I 0
u = 1.71157 1.45820I
a = 0.345297 + 0.457141I
b = 0.959259 + 0.047672I
9.03151 5.36539I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.29479 + 1.87645I
a = 0.478230 0.255335I
b = 0.724784 + 0.367690I
8.41076 + 3.99047I 0
u = 1.29479 1.87645I
a = 0.478230 + 0.255335I
b = 0.724784 0.367690I
8.41076 3.99047I 0
u = 1.65453 + 1.63052I
a = 0.382255 0.391673I
b = 0.882553 + 0.091874I
9.95002 + 0.24033I 0
u = 1.65453 1.63052I
a = 0.382255 + 0.391673I
b = 0.882553 0.091874I
9.95002 0.24033I 0
u = 1.53540 + 2.28777I
a = 0.360009 0.207800I
b = 0.569607 + 0.219649I
2.65240 1.11142I 0
u = 1.53540 2.28777I
a = 0.360009 + 0.207800I
b = 0.569607 0.219649I
2.65240 + 1.11142I 0
9
II.
I
u
2
= h−u
31
u
30
+· · ·a2, 2u
31
+u
30
+· · ·+a
2
+3, u
32
+u
31
+· · ·+2u+1i
(i) Arc colorings
a
4
=
1
0
a
10
=
0
u
a
5
=
1
u
2
a
12
=
a
u
31
+ u
30
+ ··· + a + 2
a
9
=
u
31
+ u
30
+ ··· + u + 2
u
31
+ u
30
+ ··· a + 2
a
1
=
u
5
u
u
7
u
5
+ 2u
3
u
a
8
=
a u
u
31
+ u
30
+ ··· a + 2
a
11
=
u
31
u
30
+ ··· u 2
u
31
+ u
30
+ ··· + a + 2
a
7
=
u
5
+ u
u
5
+ u
3
u
a
3
=
u
10
+ u
8
2u
6
+ u
4
u
2
+ 1
u
10
2u
8
+ 3u
6
2u
4
+ u
2
a
2
=
u
27
+ 4u
25
+ ··· + 10u
5
5u
3
u
27
5u
25
+ ··· + 3u
3
u
a
6
=
u
17
+ 2u
15
5u
13
+ 6u
11
7u
9
+ 6u
7
2u
5
+ 2u
3
+ u
u
19
3u
17
+ 8u
15
13u
13
+ 17u
11
17u
9
+ 12u
7
8u
5
+ 3u
3
u
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 4u
30
+ 20u
28
+ 4u
27
68u
26
20u
25
+ 156u
24
+ 68u
23
276u
22
160u
21
+ 380u
20
+
292u
19
404u
18
428u
17
+ 328u
16
+ 504u
15
160u
14
496u
13
8u
12
+ 392u
11
+
124u
10
252u
9
156u
8
+ 120u
7
+ 116u
6
28u
5
64u
4
4u
3
+ 16u
2
+ 12u 2
10
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
32
+ 15u
31
+ ··· + 2u + 1)
2
c
2
, c
5
(u
32
+ u
31
+ ··· u
2
+ 1)
2
c
3
(u
32
+ 4u
31
+ ··· + 28u + 4)
2
c
4
(u
32
u
31
+ ··· 2u + 1)
2
c
6
(u
32
+ 3u
31
+ ··· + 2u + 3)
2
c
7
, c
9
, c
10
c
12
u
64
11u
63
+ ··· + 4u + 1
c
8
, c
11
u
64
+ u
63
+ ··· 8574468u + 1426351
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
32
+ 5y
31
+ ··· + 2y + 1)
2
c
2
, c
5
(y
32
15y
31
+ ··· 2y + 1)
2
c
3
(y
32
20y
31
+ ··· 184y + 16)
2
c
4
(y
32
11y
31
+ ··· 2y + 1)
2
c
6
(y
32
+ 5y
31
+ ··· + 164y + 9)
2
c
7
, c
9
, c
10
c
12
y
64
+ 43y
63
+ ··· 58y + 1
c
8
, c
11
y
64
33y
63
+ ··· 47292589687204y + 2034477175201
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.613006 + 0.792175I
a = 0.991143 + 0.568727I
b = 1.182060 + 0.538855I
2.22015 + 7.30693I 2.17644 4.86883I
u = 0.613006 + 0.792175I
a = 0.378138 + 0.223448I
b = 0.86730 + 1.43651I
2.22015 + 7.30693I 2.17644 4.86883I
u = 0.613006 0.792175I
a = 0.991143 0.568727I
b = 1.182060 0.538855I
2.22015 7.30693I 2.17644 + 4.86883I
u = 0.613006 0.792175I
a = 0.378138 0.223448I
b = 0.86730 1.43651I
2.22015 7.30693I 2.17644 + 4.86883I
u = 0.674958 + 0.742403I
a = 0.814727 + 0.619700I
b = 0.843215 + 0.599874I
0.345747 + 0.057794I 5.67435 + 0.61686I
u = 0.674958 + 0.742403I
a = 0.139769 + 0.122703I
b = 0.700606 + 1.011950I
0.345747 + 0.057794I 5.67435 + 0.61686I
u = 0.674958 0.742403I
a = 0.814727 0.619700I
b = 0.843215 0.599874I
0.345747 0.057794I 5.67435 0.61686I
u = 0.674958 0.742403I
a = 0.139769 0.122703I
b = 0.700606 1.011950I
0.345747 0.057794I 5.67435 0.61686I
u = 0.600521 + 0.762759I
a = 0.990953 + 0.630677I
b = 1.150690 + 0.671706I
4.27947 2.26361I 1.018945 + 0.670058I
u = 0.600521 + 0.762759I
a = 0.390433 + 0.132083I
b = 0.99299 + 1.32833I
4.27947 2.26361I 1.018945 + 0.670058I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.600521 0.762759I
a = 0.990953 0.630677I
b = 1.150690 0.671706I
4.27947 + 2.26361I 1.018945 0.670058I
u = 0.600521 0.762759I
a = 0.390433 0.132083I
b = 0.99299 1.32833I
4.27947 + 2.26361I 1.018945 0.670058I
u = 0.849583 + 0.407230I
a = 0.257323 0.869065I
b = 1.44423 0.10517I
3.39887 4.15286I 2.01286 + 7.18864I
u = 0.849583 + 0.407230I
a = 0.592259 + 1.276300I
b = 0.188985 + 0.615704I
3.39887 4.15286I 2.01286 + 7.18864I
u = 0.849583 0.407230I
a = 0.257323 + 0.869065I
b = 1.44423 + 0.10517I
3.39887 + 4.15286I 2.01286 7.18864I
u = 0.849583 0.407230I
a = 0.592259 1.276300I
b = 0.188985 0.615704I
3.39887 + 4.15286I 2.01286 7.18864I
u = 1.093530 + 0.032199I
a = 0.548154 1.299260I
b = 1.111940 + 0.241357I
10.01990 1.36697I 7.90065 + 0.55023I
u = 1.093530 + 0.032199I
a = 0.54538 + 1.33146I
b = 0.926137 0.270830I
10.01990 1.36697I 7.90065 + 0.55023I
u = 1.093530 0.032199I
a = 0.548154 + 1.299260I
b = 1.111940 0.241357I
10.01990 + 1.36697I 7.90065 0.55023I
u = 1.093530 0.032199I
a = 0.54538 1.33146I
b = 0.926137 + 0.270830I
10.01990 + 1.36697I 7.90065 0.55023I
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.098860 + 0.059621I
a = 0.552832 1.283140I
b = 1.188240 + 0.238476I
8.24887 + 6.50568I 4.96918 5.51070I
u = 1.098860 + 0.059621I
a = 0.54603 + 1.34276I
b = 0.842777 0.296157I
8.24887 + 6.50568I 4.96918 5.51070I
u = 1.098860 0.059621I
a = 0.552832 + 1.283140I
b = 1.188240 0.238476I
8.24887 6.50568I 4.96918 + 5.51070I
u = 1.098860 0.059621I
a = 0.54603 1.34276I
b = 0.842777 + 0.296157I
8.24887 6.50568I 4.96918 + 5.51070I
u = 0.858258 + 0.694285I
a = 0.353853 + 0.953789I
b = 0.696175 + 0.858994I
0.68161 2.66625I 1.77705 + 3.31297I
u = 0.858258 + 0.694285I
a = 0.504405 0.259504I
b = 0.637544 0.224845I
0.68161 2.66625I 1.77705 + 3.31297I
u = 0.858258 0.694285I
a = 0.353853 0.953789I
b = 0.696175 0.858994I
0.68161 + 2.66625I 1.77705 3.31297I
u = 0.858258 0.694285I
a = 0.504405 + 0.259504I
b = 0.637544 + 0.224845I
0.68161 + 2.66625I 1.77705 3.31297I
u = 0.828553 + 0.741140I
a = 0.286437 + 0.827841I
b = 0.593381 + 0.962196I
2.41066 0.95663I 6.35494 + 0.97622I
u = 0.828553 + 0.741140I
a = 0.542115 0.086700I
b = 0.309214 0.140871I
2.41066 0.95663I 6.35494 + 0.97622I
15
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.828553 0.741140I
a = 0.286437 0.827841I
b = 0.593381 0.962196I
2.41066 + 0.95663I 6.35494 0.97622I
u = 0.828553 0.741140I
a = 0.542115 + 0.086700I
b = 0.309214 + 0.140871I
2.41066 + 0.95663I 6.35494 0.97622I
u = 0.891994 + 0.729689I
a = 0.253631 + 0.984227I
b = 0.796465 + 0.944428I
2.21840 + 6.53878I 5.61404 6.99151I
u = 0.891994 + 0.729689I
a = 0.638363 0.254538I
b = 0.532638 0.469112I
2.21840 + 6.53878I 5.61404 6.99151I
u = 0.891994 0.729689I
a = 0.253631 0.984227I
b = 0.796465 0.944428I
2.21840 6.53878I 5.61404 + 6.99151I
u = 0.891994 0.729689I
a = 0.638363 + 0.254538I
b = 0.532638 + 0.469112I
2.21840 6.53878I 5.61404 + 6.99151I
u = 1.022970 + 0.630121I
a = 0.702017 0.598737I
b = 1.234440 0.678426I
6.32371 + 5.05352I 4.11469 5.31459I
u = 1.022970 + 0.630121I
a = 0.320956 + 1.228860I
b = 0.988094 + 0.453551I
6.32371 + 5.05352I 4.11469 5.31459I
u = 1.022970 0.630121I
a = 0.702017 + 0.598737I
b = 1.234440 + 0.678426I
6.32371 5.05352I 4.11469 + 5.31459I
u = 1.022970 0.630121I
a = 0.320956 1.228860I
b = 0.988094 0.453551I
6.32371 5.05352I 4.11469 + 5.31459I
16
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.997643 + 0.681461I
a = 0.726980 0.495574I
b = 1.016280 0.754097I
0.62565 5.49753I 3.62281 + 4.60034I
u = 0.997643 + 0.681461I
a = 0.270663 + 1.177040I
b = 1.043920 + 0.650978I
0.62565 5.49753I 3.62281 + 4.60034I
u = 0.997643 0.681461I
a = 0.726980 + 0.495574I
b = 1.016280 + 0.754097I
0.62565 + 5.49753I 3.62281 4.60034I
u = 0.997643 0.681461I
a = 0.270663 1.177040I
b = 1.043920 0.650978I
0.62565 + 5.49753I 3.62281 4.60034I
u = 0.416995 + 0.648442I
a = 0.866981 0.198915I
b = 1.88993 + 1.31188I
3.37910 4.79464I 1.29089 + 5.61871I
u = 0.416995 + 0.648442I
a = 1.28398 + 0.84736I
b = 1.35726 + 1.45293I
3.37910 4.79464I 1.29089 + 5.61871I
u = 0.416995 0.648442I
a = 0.866981 + 0.198915I
b = 1.88993 1.31188I
3.37910 + 4.79464I 1.29089 5.61871I
u = 0.416995 0.648442I
a = 1.28398 0.84736I
b = 1.35726 1.45293I
3.37910 + 4.79464I 1.29089 5.61871I
u = 1.031610 + 0.673233I
a = 0.763322 0.549290I
b = 1.14586 0.83030I
5.55363 + 7.72193I 2.98438 5.32873I
u = 1.031610 + 0.673233I
a = 0.268289 + 1.222520I
b = 1.122660 + 0.546584I
5.55363 + 7.72193I 2.98438 5.32873I
17
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.031610 0.673233I
a = 0.763322 + 0.549290I
b = 1.14586 + 0.83030I
5.55363 7.72193I 2.98438 + 5.32873I
u = 1.031610 0.673233I
a = 0.268289 1.222520I
b = 1.122660 0.546584I
5.55363 7.72193I 2.98438 + 5.32873I
u = 1.036490 + 0.686644I
a = 0.786050 0.537663I
b = 1.12365 0.88821I
3.48615 12.88870I 0.12323 + 9.41526I
u = 1.036490 + 0.686644I
a = 0.250444 + 1.224310I
b = 1.171630 + 0.573964I
3.48615 12.88870I 0.12323 + 9.41526I
u = 1.036490 0.686644I
a = 0.786050 + 0.537663I
b = 1.12365 + 0.88821I
3.48615 + 12.88870I 0.12323 9.41526I
u = 1.036490 0.686644I
a = 0.250444 1.224310I
b = 1.171630 0.573964I
3.48615 + 12.88870I 0.12323 9.41526I
u = 0.730192 + 0.168194I
a = 0.156002 1.338560I
b = 1.55205 0.40149I
4.45908 + 0.19319I 5.20830 0.78328I
u = 0.730192 + 0.168194I
a = 0.57419 + 1.50676I
b = 0.646114 + 0.904532I
4.45908 + 0.19319I 5.20830 0.78328I
u = 0.730192 0.168194I
a = 0.156002 + 1.338560I
b = 1.55205 + 0.40149I
4.45908 0.19319I 5.20830 + 0.78328I
u = 0.730192 0.168194I
a = 0.57419 1.50676I
b = 0.646114 0.904532I
4.45908 0.19319I 5.20830 + 0.78328I
18
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.164238 + 0.469611I
a = 1.84018 0.39005I
b = 2.92010 + 1.71566I
1.64661 + 1.19641I 5.57525 0.85209I
u = 0.164238 + 0.469611I
a = 2.00442 + 0.85967I
b = 1.86144 + 2.61422I
1.64661 + 1.19641I 5.57525 0.85209I
u = 0.164238 0.469611I
a = 1.84018 + 0.39005I
b = 2.92010 1.71566I
1.64661 1.19641I 5.57525 + 0.85209I
u = 0.164238 0.469611I
a = 2.00442 0.85967I
b = 1.86144 2.61422I
1.64661 1.19641I 5.57525 + 0.85209I
19
III. I
u
3
= hu
2
a u
3
u
2
+ b a, a
2
au u, u
4
+ u
3
+ 1i
(i) Arc colorings
a
4
=
1
0
a
10
=
0
u
a
5
=
1
u
2
a
12
=
a
u
2
a + u
3
+ u
2
+ a
a
9
=
u
2
a + u
2
u
3
a + u
2
a + u
3
+ u
2
+ u + 1
a
1
=
u
3
1
u
3
+ u
2
u
a
8
=
a u
u
3
+ u
2
a + u
a
11
=
u
2
a u
3
u
2
u
2
a + u
3
+ u
2
+ a
a
7
=
u
3
+ 1
1
a
3
=
u
3
1
a
2
=
u
u
3
u
a
6
=
u
2
+ 1
u
3
+ 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2
20
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
4
+ u
3
+ 2u
2
+ 1)
2
c
2
, c
5
(u
4
+ u
3
+ 1)
2
c
3
(u 1)
8
c
4
(u
4
u
3
+ 1)
2
c
6
(u
4
u
2
2u + 3)
2
c
7
, c
9
, c
10
c
12
u
8
u
7
+ 3u
6
5u
5
+ 4u
4
5u
3
+ 3u
2
+ 1
c
8
, c
11
u
8
3u
6
+ 14u
4
+ 6u
3
18u
2
10u + 19
21
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
4
+ 3y
3
+ 6y
2
+ 4y + 1)
2
c
2
, c
4
, c
5
(y
4
y
3
+ 2y
2
+ 1)
2
c
3
(y 1)
8
c
6
(y
4
2y
3
+ 7y
2
10y + 9)
2
c
7
, c
9
, c
10
c
12
y
8
+ 5y
7
+ 7y
6
5y
5
14y
4
+ 5y
3
+ 17y
2
+ 6y + 1
c
8
, c
11
y
8
6y
7
+ 37y
6
120y
5
+ 342y
4
654y
3
+ 976y
2
784y + 361
22
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.518913 + 0.666610I
a = 1.107930 + 0.828053I
b = 1.14766 + 1.14065I
4.93480 2.00000
u = 0.518913 + 0.666610I
a = 0.589021 0.161444I
b = 1.53098 + 1.15189I
4.93480 2.00000
u = 0.518913 0.666610I
a = 1.107930 0.828053I
b = 1.14766 1.14065I
4.93480 2.00000
u = 0.518913 0.666610I
a = 0.589021 + 0.161444I
b = 1.53098 1.15189I
4.93480 2.00000
u = 1.018910 + 0.602565I
a = 0.667444 0.634184I
b = 1.28901 0.59560I
4.93480 2.00000
u = 1.018910 + 0.602565I
a = 0.351469 + 1.236750I
b = 0.905690 + 0.400260I
4.93480 2.00000
u = 1.018910 0.602565I
a = 0.667444 + 0.634184I
b = 1.28901 + 0.59560I
4.93480 2.00000
u = 1.018910 0.602565I
a = 0.351469 1.236750I
b = 0.905690 0.400260I
4.93480 2.00000
23
IV. I
u
4
= hb + 1, a
2
a + 2, u 1i
(i) Arc colorings
a
4
=
1
0
a
10
=
0
1
a
5
=
1
1
a
12
=
a
1
a
9
=
a 2
a + 1
a
1
=
2
1
a
8
=
a 1
a
a
11
=
a + 1
1
a
7
=
2
1
a
3
=
1
1
a
2
=
1
0
a
6
=
2
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2
24
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
(u + 1)
2
c
2
, c
3
, c
5
c
8
, c
11
(u 1)
2
c
6
u
2
c
7
, c
9
, c
10
c
12
u
2
u + 2
25
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
8
c
11
(y 1)
2
c
6
y
2
c
7
, c
9
, c
10
c
12
y
2
+ 3y + 4
26
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0.50000 + 1.32288I
b = 1.00000
4.93480 2.00000
u = 1.00000
a = 0.50000 1.32288I
b = 1.00000
4.93480 2.00000
27
V. I
u
5
= hb u 1, a 1, u
2
+ 1i
(i) Arc colorings
a
4
=
1
0
a
10
=
0
u
a
5
=
1
1
a
12
=
1
u + 1
a
9
=
u
2u 1
a
1
=
0
1
a
8
=
1
u
a
11
=
u
u + 1
a
7
=
0
1
a
3
=
1
1
a
2
=
1
0
a
6
=
0
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
28
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
(u 1)
2
c
4
, c
7
, c
9
c
10
, c
12
u
2
+ 1
c
5
(u + 1)
2
c
6
u
2
c
8
u
2
2u + 2
c
11
u
2
+ 2u + 2
29
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
5
(y 1)
2
c
4
, c
7
, c
9
c
10
, c
12
(y + 1)
2
c
6
y
2
c
8
, c
11
y
2
+ 4
30
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 1.000000I
a = 1.00000
b = 1.00000 + 1.00000I
1.64493 0
u = 1.000000I
a = 1.00000
b = 1.00000 1.00000I
1.64493 0
31
VI.
I
v
1
= ha, v
5
+ 2v
4
16v
2
+ 64b 16v + 32, v
6
+ 2v
5
16v
3
16v
2
+ 32v + 64i
(i) Arc colorings
a
4
=
1
0
a
10
=
v
0
a
5
=
1
0
a
12
=
0
1
64
v
5
1
32
v
4
+ ··· +
1
4
v
1
2
a
9
=
v
1
64
v
5
+
1
32
v
4
+ ···
1
4
v +
1
2
a
1
=
v
1
32
v
5
1
16
v
4
+ ··· +
1
2
v 1
a
8
=
1
64
v
5
1
32
v
4
+ ··· +
5
4
v
1
2
1
64
v
5
+
1
32
v
4
+ ···
1
4
v +
1
2
a
11
=
1
64
v
5
+
1
32
v
4
+ ···
1
4
v +
1
2
1
64
v
5
1
32
v
4
+ ··· +
1
4
v
1
2
a
7
=
1
32
v
5
1
16
v
4
+ ··· +
3
2
v 1
1
32
v
5
+
1
16
v
4
+ ···
1
2
v + 1
a
3
=
1
32
v
5
+
1
8
v
3
+ ···
1
2
v 3
1
32
v
5
1
8
v
3
1
2
v
2
+
1
2
v + 2
a
2
=
1
16
v
4
+
1
8
v
3
+
1
4
v
2
2
1
8
v
3
+ 1
a
6
=
1
32
v
5
+
1
16
v
4
+ ··· +
1
2
v + 1
1
32
v
5
+
1
4
v
2
1
2
v
(ii) Obstruction class = 1
(iii) Cusp Shapes =
17
128
v
5
+
1
32
v
3
+
9
8
v
2
1
8
v
13
2
32
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
u
6
3u
5
+ 5u
4
4u
3
+ 2u
2
u + 1
c
2
u
6
+ u
5
u
4
2u
3
+ u + 1
c
3
, c
5
u
6
u
5
u
4
+ 2u
3
u + 1
c
4
u
6
c
7
, c
9
(u 1)
6
c
8
64(64u
6
+ 32u
5
16u
4
16u
3
+ 2u + 1)
c
10
, c
12
(u + 1)
6
c
11
64(64u
6
32u
5
16u
4
+ 16u
3
2u + 1)
33
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
6
+ y
5
+ 5y
4
+ 6y
2
+ 3y + 1
c
2
, c
3
, c
5
y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1
c
4
y
6
c
7
, c
9
, c
10
c
12
(y 1)
6
c
8
, c
11
4096(4096y
6
3072y
5
+ 1280y
4
256y
3
+ 32y
2
4y + 1)
34
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.46557 + 0.76250I
a = 0
b = 0.536975 0.279376I
1.64493 + 5.69302I 5.77678 3.57560I
v = 1.46557 0.76250I
a = 0
b = 0.536975 + 0.279376I
1.64493 5.69302I 5.77678 + 3.57560I
v = 1.83596 + 0.54142I
a = 0
b = 0.501096 0.147771I
0.245672 0.924305I 3.59017 1.04572I
v = 1.83596 0.54142I
a = 0
b = 0.501096 + 0.147771I
0.245672 + 0.924305I 3.59017 + 1.04572I
v = 1.37039 + 2.12652I
a = 0
b = 0.214122 0.332266I
3.53554 0.92430I 5.00805 + 6.48027I
v = 1.37039 2.12652I
a = 0
b = 0.214122 + 0.332266I
3.53554 + 0.92430I 5.00805 6.48027I
35
VII. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u 1)
2
(u + 1)
2
(u
4
+ u
3
+ 2u
2
+ 1)
2
· (u
6
3u
5
+ 5u
4
4u
3
+ 2u
2
u + 1)(u
32
+ 15u
31
+ ··· + 2u + 1)
2
· (u
46
+ 22u
45
+ ··· + 65u + 16)
c
2
(u 1)
4
(u
4
+ u
3
+ 1)
2
(u
6
+ u
5
u
4
2u
3
+ u + 1)
· ((u
32
+ u
31
+ ··· u
2
+ 1)
2
)(u
46
+ 2u
45
+ ··· + 15u + 4)
c
3
((u 1)
12
)(u
6
u
5
+ ··· u + 1)(u
32
+ 4u
31
+ ··· + 28u + 4)
2
· (u
46
+ 2u
45
+ ··· + 419884u + 136336)
c
4
u
6
(u + 1)
2
(u
2
+ 1)(u
4
u
3
+ 1)
2
(u
32
u
31
+ ··· 2u + 1)
2
· (u
46
+ 3u
45
+ ··· + 30720u + 8192)
c
5
(u 1)
2
(u + 1)
2
(u
4
+ u
3
+ 1)
2
(u
6
u
5
u
4
+ 2u
3
u + 1)
· ((u
32
+ u
31
+ ··· u
2
+ 1)
2
)(u
46
+ 2u
45
+ ··· + 15u + 4)
c
6
u
4
(u
4
u
2
2u + 3)
2
(u
6
3u
5
+ 5u
4
4u
3
+ 2u
2
u + 1)
· ((u
32
+ 3u
31
+ ··· + 2u + 3)
2
)(u
46
+ 2u
44
+ ··· + 2032u + 448)
c
7
, c
9
((u 1)
6
)(u
2
+ 1)(u
2
u + 2)(u
8
u
7
+ ··· + 3u
2
+ 1)
· (u
46
+ 6u
45
+ ··· 6u + 1)(u
64
11u
63
+ ··· + 4u + 1)
c
8
4096(u 1)
2
(u
2
2u + 2)(64u
6
+ 32u
5
16u
4
16u
3
+ 2u + 1)
· (u
8
3u
6
+ 14u
4
+ 6u
3
18u
2
10u + 19)
· (64u
46
96u
45
+ ··· 8u
2
+ 2)
· (u
64
+ u
63
+ ··· 8574468u + 1426351)
c
10
, c
12
((u + 1)
6
)(u
2
+ 1)(u
2
u + 2)(u
8
u
7
+ ··· + 3u
2
+ 1)
· (u
46
+ 6u
45
+ ··· 6u + 1)(u
64
11u
63
+ ··· + 4u + 1)
c
11
4096(u 1)
2
(u
2
+ 2u + 2)(64u
6
32u
5
16u
4
+ 16u
3
2u + 1)
· (u
8
3u
6
+ 14u
4
+ 6u
3
18u
2
10u + 19)
· (64u
46
96u
45
+ ··· 8u
2
+ 2)
· (u
64
+ u
63
+ ··· 8574468u + 1426351)
36
VIII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y 1)
4
(y
4
+ 3y
3
+ 6y
2
+ 4y + 1)
2
(y
6
+ y
5
+ 5y
4
+ 6y
2
+ 3y + 1)
· ((y
32
+ 5y
31
+ ··· + 2y + 1)
2
)(y
46
+ 6y
45
+ ··· + 3391y + 256)
c
2
, c
5
(y 1)
4
(y
4
y
3
+ 2y
2
+ 1)
2
(y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1)
· ((y
32
15y
31
+ ··· 2y + 1)
2
)(y
46
22y
45
+ ··· 65y + 16)
c
3
(y 1)
12
(y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1)
· (y
32
20y
31
+ ··· 184y + 16)
2
· (y
46
30y
45
+ ··· 205613722768y + 18587504896)
c
4
y
6
(y 1)
2
(y + 1)
2
(y
4
y
3
+ 2y
2
+ 1)
2
(y
32
11y
31
+ ··· 2y + 1)
2
· (y
46
11y
45
+ ··· 1572864000y + 67108864)
c
6
y
4
(y
4
2y
3
+ 7y
2
10y + 9)
2
(y
6
+ y
5
+ 5y
4
+ 6y
2
+ 3y + 1)
· (y
32
+ 5y
31
+ ··· + 164y + 9)
2
· (y
46
+ 4y
45
+ ··· + 910080y + 200704)
c
7
, c
9
, c
10
c
12
(y 1)
6
(y + 1)
2
(y
2
+ 3y + 4)
· (y
8
+ 5y
7
+ 7y
6
5y
5
14y
4
+ 5y
3
+ 17y
2
+ 6y + 1)
· (y
46
+ 26y
45
+ ··· 12y + 1)(y
64
+ 43y
63
+ ··· 58y + 1)
c
8
, c
11
16777216(y 1)
2
(y
2
+ 4)
· (4096y
6
3072y
5
+ 1280y
4
256y
3
+ 32y
2
4y + 1)
· (y
8
6y
7
+ 37y
6
120y
5
+ 342y
4
654y
3
+ 976y
2
784y + 361)
· (4096y
46
93184y
45
+ ··· 32y + 4)
· (y
64
33y
63
+ ··· 47292589687204y + 2034477175201)
37