12a
0252
(K12a
0252
)
A knot diagram
1
Linearized knot diagam
3 6 7 10 11 2 12 1 4 5 9 8
Solving Sequence
5,11 2,6
3 7 1 10 4 9 12 8
c
5
c
2
c
6
c
1
c
10
c
4
c
9
c
11
c
8
c
3
, c
7
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h−3.93238 × 10
36
u
70
5.06587 × 10
36
u
69
+ ··· + 5.33198 × 10
36
b + 2.44647 × 10
37
,
5.07711 × 10
36
u
70
1.19436 × 10
37
u
69
+ ··· + 5.33198 × 10
36
a + 4.10693 × 10
37
, u
71
u
70
+ ··· 4u + 4i
I
u
2
= h−au + b + 1, 2a
2
+ au + 2a + 2u + 3, u
2
2i
I
v
1
= ha, b + v, v
2
+ v + 1i
* 3 irreducible components of dim
C
= 0, with total 77 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−3.93×10
36
u
70
5.07×10
36
u
69
+· · ·+5.33×10
36
b+2.45×10
37
, 5.08×
10
36
u
70
1.19×10
37
u
69
+· · ·+5.33×10
36
a+4.11×10
37
, u
71
u
70
+· · ·4u+4i
(i) Arc colorings
a
5
=
1
0
a
11
=
0
u
a
2
=
0.952200u
70
+ 2.23999u
69
+ ··· + 20.1357u 7.70244
0.737508u
70
+ 0.950092u
69
+ ··· + 6.24797u 4.58829
a
6
=
1
u
2
a
3
=
0.741052u
70
+ 2.20642u
69
+ ··· + 17.4237u 7.13958
1.16557u
70
+ 1.11369u
69
+ ··· + 6.11369u 5.29860
a
7
=
1.16962u
70
+ 1.25814u
69
+ ··· + 8.82584u 2.37901
0.630401u
70
0.239711u
69
+ ··· 3.62581u + 2.09462
a
1
=
0.429711u
70
+ 0.940016u
69
+ ··· + 10.0861u 2.73375
0.311878u
70
0.164899u
69
+ ··· + 1.39448u 0.301335
a
10
=
u
u
a
4
=
u
2
+ 1
u
2
a
9
=
u
3
+ 2u
u
3
+ u
a
12
=
u
7
+ 4u
5
4u
3
u
7
+ 3u
5
2u
3
+ u
a
8
=
0.518233u
70
+ 1.13571u
69
+ ··· + 3.53681u 1.30370
0.0840621u
70
+ 0.422232u
69
+ ··· 1.48260u 0.530560
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2.34776u
70
2.08944u
69
+ ··· 14.6022u 7.88015
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
71
+ 34u
70
+ ··· + 6u 1
c
2
, c
6
u
71
2u
70
+ ··· 2u 1
c
3
u
71
+ 2u
70
+ ··· 3942u 797
c
4
, c
5
, c
9
c
10
u
71
+ u
70
+ ··· 4u 4
c
7
, c
8
, c
12
u
71
+ 3u
70
+ ··· + 19u 7
c
11
u
71
15u
70
+ ··· + 3072u 1792
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
71
+ 10y
70
+ ··· + 62y 1
c
2
, c
6
y
71
+ 34y
70
+ ··· + 6y 1
c
3
y
71
14y
70
+ ··· + 18751274y 635209
c
4
, c
5
, c
9
c
10
y
71
81y
70
+ ··· + 176y 16
c
7
, c
8
, c
12
y
71
63y
70
+ ··· 17y 49
c
11
y
71
+ 11y
70
+ ··· 2719744y 3211264
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.974962
a = 0.132568
b = 0.762090
6.07387 0
u = 1.041460 + 0.273367I
a = 0.83444 1.61294I
b = 0.309992 0.982745I
9.26803 3.63527I 0
u = 1.041460 0.273367I
a = 0.83444 + 1.61294I
b = 0.309992 + 0.982745I
9.26803 + 3.63527I 0
u = 0.683517 + 0.613751I
a = 1.85094 + 1.31765I
b = 0.360642 + 0.541603I
4.89636 + 11.68020I 0
u = 0.683517 0.613751I
a = 1.85094 1.31765I
b = 0.360642 0.541603I
4.89636 11.68020I 0
u = 0.744307 + 0.516977I
a = 0.718389 1.009080I
b = 0.783067 + 0.302046I
7.31151 + 3.80947I 16.8222 + 0.I
u = 0.744307 0.516977I
a = 0.718389 + 1.009080I
b = 0.783067 0.302046I
7.31151 3.80947I 16.8222 + 0.I
u = 0.661129 + 0.571595I
a = 0.138662 0.821456I
b = 0.180040 0.537662I
2.56545 6.56727I 10.30221 + 5.89278I
u = 0.661129 0.571595I
a = 0.138662 + 0.821456I
b = 0.180040 + 0.537662I
2.56545 + 6.56727I 10.30221 5.89278I
u = 0.617792 + 0.529373I
a = 2.11045 1.58230I
b = 0.257256 0.453919I
0.22354 7.65304I 8.99939 + 9.03031I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.617792 0.529373I
a = 2.11045 + 1.58230I
b = 0.257256 + 0.453919I
0.22354 + 7.65304I 8.99939 9.03031I
u = 0.288994 + 0.715682I
a = 0.753951 + 0.022023I
b = 0.23407 1.43165I
3.71427 7.22650I 11.76200 + 4.77338I
u = 0.288994 0.715682I
a = 0.753951 0.022023I
b = 0.23407 + 1.43165I
3.71427 + 7.22650I 11.76200 4.77338I
u = 0.555286 + 0.514091I
a = 0.029022 + 0.997262I
b = 0.126622 + 0.427682I
2.23050 + 2.79648I 5.08952 4.76680I
u = 0.555286 0.514091I
a = 0.029022 0.997262I
b = 0.126622 0.427682I
2.23050 2.79648I 5.08952 + 4.76680I
u = 0.555198 + 0.441849I
a = 1.154400 + 0.039318I
b = 0.802206 0.072715I
1.00765 4.12329I 9.75666 + 7.48395I
u = 0.555198 0.441849I
a = 1.154400 0.039318I
b = 0.802206 + 0.072715I
1.00765 + 4.12329I 9.75666 7.48395I
u = 0.284882 + 0.644950I
a = 1.080530 + 0.041177I
b = 0.317243 + 0.055472I
1.45298 + 2.44652I 8.12987 0.62519I
u = 0.284882 0.644950I
a = 1.080530 0.041177I
b = 0.317243 0.055472I
1.45298 2.44652I 8.12987 + 0.62519I
u = 0.611937 + 0.345920I
a = 1.19608 + 1.32035I
b = 0.493119 0.166503I
1.94003 0.80211I 13.09901 + 4.19449I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.611937 0.345920I
a = 1.19608 1.32035I
b = 0.493119 + 0.166503I
1.94003 + 0.80211I 13.09901 4.19449I
u = 0.148480 + 0.684433I
a = 0.856675 0.243803I
b = 0.146478 + 1.028510I
5.49853 + 0.20966I 14.2031 1.3385I
u = 0.148480 0.684433I
a = 0.856675 + 0.243803I
b = 0.146478 1.028510I
5.49853 0.20966I 14.2031 + 1.3385I
u = 1.281050 + 0.223593I
a = 0.145673 + 1.042540I
b = 1.317600 + 0.481811I
8.63854 + 3.81527I 0
u = 1.281050 0.223593I
a = 0.145673 1.042540I
b = 1.317600 0.481811I
8.63854 3.81527I 0
u = 0.399835 + 0.531286I
a = 1.111270 0.044872I
b = 0.493071 + 0.030498I
2.68818 + 0.83256I 3.03948 3.39872I
u = 0.399835 0.531286I
a = 1.111270 + 0.044872I
b = 0.493071 0.030498I
2.68818 0.83256I 3.03948 + 3.39872I
u = 0.562198 + 0.354555I
a = 2.26602 + 2.56094I
b = 0.071941 + 0.357866I
2.07090 + 3.34227I 13.0075 6.0861I
u = 0.562198 0.354555I
a = 2.26602 2.56094I
b = 0.071941 0.357866I
2.07090 3.34227I 13.0075 + 6.0861I
u = 0.662402 + 0.022295I
a = 0.32012 2.79437I
b = 0.334133 0.224554I
2.89598 2.84826I 16.4142 + 5.1408I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.662402 0.022295I
a = 0.32012 + 2.79437I
b = 0.334133 + 0.224554I
2.89598 + 2.84826I 16.4142 5.1408I
u = 0.319547 + 0.564821I
a = 0.815652 + 0.018623I
b = 0.373590 + 1.327950I
1.09698 + 3.88412I 5.83336 2.81724I
u = 0.319547 0.564821I
a = 0.815652 0.018623I
b = 0.373590 1.327950I
1.09698 3.88412I 5.83336 + 2.81724I
u = 1.382810 + 0.085315I
a = 0.770899 + 0.369521I
b = 1.73606 + 0.52292I
6.41810 + 0.14375I 0
u = 1.382810 0.085315I
a = 0.770899 0.369521I
b = 1.73606 0.52292I
6.41810 0.14375I 0
u = 0.509163 + 0.332791I
a = 0.901210 0.137186I
b = 0.70921 1.26609I
1.87792 0.91954I 12.51300 2.70436I
u = 0.509163 0.332791I
a = 0.901210 + 0.137186I
b = 0.70921 + 1.26609I
1.87792 + 0.91954I 12.51300 + 2.70436I
u = 0.396419 + 0.434178I
a = 0.55903 1.50302I
b = 0.056466 0.287345I
0.545124 + 0.994643I 7.84415 + 1.46512I
u = 0.396419 0.434178I
a = 0.55903 + 1.50302I
b = 0.056466 + 0.287345I
0.545124 0.994643I 7.84415 1.46512I
u = 1.44238 + 0.08576I
a = 0.349916 0.860243I
b = 1.51352 0.74219I
4.43692 1.78201I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.44238 0.08576I
a = 0.349916 + 0.860243I
b = 1.51352 + 0.74219I
4.43692 + 1.78201I 0
u = 1.48243 + 0.11601I
a = 0.503110 0.588443I
b = 1.54844 0.83999I
3.44891 3.00583I 0
u = 1.48243 0.11601I
a = 0.503110 + 0.588443I
b = 1.54844 + 0.83999I
3.44891 + 3.00583I 0
u = 1.52603 + 0.07657I
a = 0.792598 0.307607I
b = 1.30084 0.77169I
6.95261 + 0.55649I 0
u = 1.52603 0.07657I
a = 0.792598 + 0.307607I
b = 1.30084 + 0.77169I
6.95261 0.55649I 0
u = 1.55290 + 0.14230I
a = 0.540917 + 0.452635I
b = 0.733603 + 1.181220I
4.83267 5.13999I 0
u = 1.55290 0.14230I
a = 0.540917 0.452635I
b = 0.733603 1.181220I
4.83267 + 5.13999I 0
u = 1.55861 + 0.09132I
a = 0.303039 + 0.740752I
b = 1.64578 + 0.75593I
8.96219 0.58402I 0
u = 1.55861 0.09132I
a = 0.303039 0.740752I
b = 1.64578 0.75593I
8.96219 + 0.58402I 0
u = 0.437893
a = 0.702032
b = 0.178433
0.692654 14.1050
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.56098 + 0.11999I
a = 0.416452 + 0.590189I
b = 1.56200 + 0.90423I
8.16520 + 6.12024I 0
u = 1.56098 0.11999I
a = 0.416452 0.590189I
b = 1.56200 0.90423I
8.16520 6.12024I 0
u = 1.56896 + 0.10229I
a = 1.02180 + 2.69391I
b = 2.15590 + 5.82172I
9.34889 5.00736I 0
u = 1.56896 0.10229I
a = 1.02180 2.69391I
b = 2.15590 5.82172I
9.34889 + 5.00736I 0
u = 1.57483 + 0.09927I
a = 0.75369 + 2.16400I
b = 0.95108 + 4.45781I
9.36775 + 2.43571I 0
u = 1.57483 0.09927I
a = 0.75369 2.16400I
b = 0.95108 4.45781I
9.36775 2.43571I 0
u = 1.58020 + 0.03046I
a = 0.41422 2.66376I
b = 0.43461 5.57845I
10.52460 + 2.50482I 0
u = 1.58020 0.03046I
a = 0.41422 + 2.66376I
b = 0.43461 + 5.57845I
10.52460 2.50482I 0
u = 1.57417 + 0.15470I
a = 1.25068 2.27271I
b = 2.53079 5.06207I
7.14402 + 10.15450I 0
u = 1.57417 0.15470I
a = 1.25068 + 2.27271I
b = 2.53079 + 5.06207I
7.14402 10.15450I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.58909 + 0.17273I
a = 0.405664 0.412866I
b = 0.391537 1.150890I
10.12550 + 9.32824I 0
u = 1.58909 0.17273I
a = 0.405664 + 0.412866I
b = 0.391537 + 1.150890I
10.12550 9.32824I 0
u = 0.089398 + 0.387096I
a = 0.988618 + 0.088778I
b = 0.248296 0.842415I
0.50745 1.65056I 4.58929 + 3.33883I
u = 0.089398 0.387096I
a = 0.988618 0.088778I
b = 0.248296 + 0.842415I
0.50745 + 1.65056I 4.58929 3.33883I
u = 1.59787 + 0.18877I
a = 1.18769 + 2.00228I
b = 2.37919 + 4.60569I
12.5488 14.6759I 0
u = 1.59787 0.18877I
a = 1.18769 2.00228I
b = 2.37919 4.60569I
12.5488 + 14.6759I 0
u = 1.61397 + 0.14947I
a = 0.59553 1.87276I
b = 0.44662 3.91654I
15.3002 6.3034I 0
u = 1.61397 0.14947I
a = 0.59553 + 1.87276I
b = 0.44662 + 3.91654I
15.3002 + 6.3034I 0
u = 1.63502
a = 0.507683
b = 0.526412
14.8851 0
u = 1.65827 + 0.02787I
a = 0.21619 2.25531I
b = 0.81168 5.01290I
18.5709 + 4.4255I 0
11
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.65827 0.02787I
a = 0.21619 + 2.25531I
b = 0.81168 + 5.01290I
18.5709 4.4255I 0
12
II. I
u
2
= h−au + b + 1, 2a
2
+ au + 2a + 2u + 3, u
2
2i
(i) Arc colorings
a
5
=
1
0
a
11
=
0
u
a
2
=
a
au 1
a
6
=
1
2
a
3
=
au a 1
3au 4a 3
a
7
=
1
2
u
au 2a u
a
1
=
1
2
u
au 2a u
a
10
=
u
u
a
4
=
1
2
a
9
=
0
u
a
12
=
0
u
a
8
=
1
2
u
au 2a 2u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4au 8a 16
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u
2
u + 1)
2
c
3
, c
6
(u
2
+ u + 1)
2
c
4
, c
5
, c
9
c
10
(u
2
2)
2
c
7
, c
8
(u + 1)
4
c
11
u
4
c
12
(u 1)
4
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
6
(y
2
+ y + 1)
2
c
4
, c
5
, c
9
c
10
(y 2)
4
c
7
, c
8
, c
12
(y 1)
4
c
11
y
4
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.41421
a = 0.85355 + 1.47840I
b = 2.20711 + 2.09077I
6.57974 + 2.02988I 14.0000 3.4641I
u = 1.41421
a = 0.85355 1.47840I
b = 2.20711 2.09077I
6.57974 2.02988I 14.0000 + 3.4641I
u = 1.41421
a = 0.146447 + 0.253653I
b = 0.792893 0.358719I
6.57974 + 2.02988I 14.0000 3.4641I
u = 1.41421
a = 0.146447 0.253653I
b = 0.792893 + 0.358719I
6.57974 2.02988I 14.0000 + 3.4641I
16
III. I
v
1
= ha, b + v, v
2
+ v + 1i
(i) Arc colorings
a
5
=
1
0
a
11
=
v
0
a
2
=
0
v
a
6
=
1
0
a
3
=
v
v
a
7
=
1
v + 1
a
1
=
1
v 1
a
10
=
v
0
a
4
=
1
0
a
9
=
v
0
a
12
=
v
0
a
8
=
v + 1
v + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4v 10
17
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
6
u
2
u + 1
c
2
u
2
+ u + 1
c
4
, c
5
, c
9
c
10
, c
11
u
2
c
7
, c
8
(u 1)
2
c
12
(u + 1)
2
18
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
6
y
2
+ y + 1
c
4
, c
5
, c
9
c
10
, c
11
y
2
c
7
, c
8
, c
12
(y 1)
2
19
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 0.500000 + 0.866025I
a = 0
b = 0.500000 0.866025I
1.64493 2.02988I 12.00000 + 3.46410I
v = 0.500000 0.866025I
a = 0
b = 0.500000 + 0.866025I
1.64493 + 2.02988I 12.00000 3.46410I
20
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
2
u + 1)
3
)(u
71
+ 34u
70
+ ··· + 6u 1)
c
2
((u
2
u + 1)
2
)(u
2
+ u + 1)(u
71
2u
70
+ ··· 2u 1)
c
3
(u
2
u + 1)(u
2
+ u + 1)
2
(u
71
+ 2u
70
+ ··· 3942u 797)
c
4
, c
5
, c
9
c
10
u
2
(u
2
2)
2
(u
71
+ u
70
+ ··· 4u 4)
c
6
(u
2
u + 1)(u
2
+ u + 1)
2
(u
71
2u
70
+ ··· 2u 1)
c
7
, c
8
((u 1)
2
)(u + 1)
4
(u
71
+ 3u
70
+ ··· + 19u 7)
c
11
u
6
(u
71
15u
70
+ ··· + 3072u 1792)
c
12
((u 1)
4
)(u + 1)
2
(u
71
+ 3u
70
+ ··· + 19u 7)
21
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y
2
+ y + 1)
3
)(y
71
+ 10y
70
+ ··· + 62y 1)
c
2
, c
6
((y
2
+ y + 1)
3
)(y
71
+ 34y
70
+ ··· + 6y 1)
c
3
((y
2
+ y + 1)
3
)(y
71
14y
70
+ ··· + 1.87513 × 10
7
y 635209)
c
4
, c
5
, c
9
c
10
y
2
(y 2)
4
(y
71
81y
70
+ ··· + 176y 16)
c
7
, c
8
, c
12
((y 1)
6
)(y
71
63y
70
+ ··· 17y 49)
c
11
y
6
(y
71
+ 11y
70
+ ··· 2719744y 3211264)
22