10
21
(K10a
60
)
A knot diagram
1
Linearized knot diagam
8 7 9 6 10 1 2 3 4 5
Solving Sequence
3,7
2 8 9 4 10 1 6 5
c
2
c
7
c
8
c
3
c
9
c
1
c
6
c
5
c
4
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= hu
16
u
15
+ ··· 2u + 1i
I
u
2
= hu
6
+ 2u
4
+ u
3
+ u
2
+ u 1i
* 2 irreducible components of dim
C
= 0, with total 22 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
16
u
15
+ 7u
14
7u
13
+ 20u
12
20u
11
+ 27u
10
27u
9
+ 12u
8
12u
7
8u
6
+ 8u
5
6u
4
+ 6u
3
+ 3u
2
2u + 1i
(i) Arc colorings
a
3
=
1
0
a
7
=
0
u
a
2
=
1
u
2
a
8
=
u
u
3
+ u
a
9
=
u
3
2u
u
3
+ u
a
4
=
u
6
3u
4
2u
2
+ 1
u
6
+ 2u
4
+ u
2
a
10
=
u
9
+ 4u
7
+ 5u
5
3u
u
9
3u
7
3u
5
+ u
a
1
=
u
2
+ 1
u
4
2u
2
a
6
=
u
5
+ 2u
3
+ u
u
7
3u
5
2u
3
+ u
a
5
=
u
15
+ 7u
13
+ ··· 3u
2
+ u
u
15
7u
13
+ ··· + 3u
2
+ 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
15
4u
14
+ 28u
13
24u
12
+ 76u
11
56u
10
+ 88u
9
52u
8
+
8u
7
+ 4u
6
64u
5
+ 28u
4
24u
3
4u
2
+ 20u 14
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
7
u
16
+ u
15
+ ··· + 2u + 1
c
3
, c
6
, c
8
c
9
u
16
+ 2u
15
+ ··· + u + 2
c
4
u
16
+ 9u
15
+ ··· + 2u + 1
c
5
, c
10
u
16
+ u
15
+ ··· + u
2
+ 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
7
y
16
+ 13y
15
+ ··· + 2y + 1
c
3
, c
6
, c
8
c
9
y
16
18y
15
+ ··· + 19y + 4
c
4
y
16
3y
15
+ ··· 2y + 1
c
5
, c
10
y
16
+ 9y
15
+ ··· + 2y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.913611 + 0.024079I
12.72960 4.85972I 13.14726 + 3.11789I
u = 0.913611 0.024079I
12.72960 + 4.85972I 13.14726 3.11789I
u = 0.186298 + 1.238560I
2.77285 2.45923I 2.72504 + 3.25382I
u = 0.186298 1.238560I
2.77285 + 2.45923I 2.72504 3.25382I
u = 0.048176 + 1.278470I
4.14984 1.95072I 0.93886 + 4.17042I
u = 0.048176 1.278470I
4.14984 + 1.95072I 0.93886 4.17042I
u = 0.255012 + 1.283570I
0.60263 + 6.60937I 6.51664 7.40663I
u = 0.255012 1.283570I
0.60263 6.60937I 6.51664 + 7.40663I
u = 0.650102 + 0.127920I
3.75337 + 3.37292I 12.93248 5.20888I
u = 0.650102 0.127920I
3.75337 3.37292I 12.93248 + 5.20888I
u = 0.427423 + 1.281870I
4.90049 + 4.73480I 6.47201 3.02289I
u = 0.427423 1.281870I
4.90049 4.73480I 6.47201 + 3.02289I
u = 0.434047 + 1.303760I
8.59381 9.67514I 9.50822 + 5.97678I
u = 0.434047 1.303760I
8.59381 + 9.67514I 9.50822 5.97678I
u = 0.250406 + 0.342321I
0.577111 1.084380I 7.75949 + 5.90127I
u = 0.250406 0.342321I
0.577111 + 1.084380I 7.75949 5.90127I
5
II. I
u
2
= hu
6
+ 2u
4
+ u
3
+ u
2
+ u 1i
(i) Arc colorings
a
3
=
1
0
a
7
=
0
u
a
2
=
1
u
2
a
8
=
u
u
3
+ u
a
9
=
u
3
2u
u
3
+ u
a
4
=
u
4
+ u
3
u
2
+ u
u
3
u + 1
a
10
=
u
4
u
2
1
u
3
u + 1
a
1
=
u
2
+ 1
u
4
2u
2
a
6
=
u
5
+ 2u
3
+ u
u
5
+ u
4
u
3
+ u
2
a
5
=
u
3
u
5
u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 10
6
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
c
7
, c
10
u
6
+ 2u
4
u
3
+ u
2
u 1
c
3
, c
6
, c
8
c
9
(u
2
u 1)
3
c
4
u
6
+ 4u
5
+ 6u
4
+ u
3
5u
2
3u + 1
7
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
7
, c
10
y
6
+ 4y
5
+ 6y
4
+ y
3
5y
2
3y + 1
c
3
, c
6
, c
8
c
9
(y
2
3y + 1)
3
c
4
y
6
4y
5
+ 18y
4
35y
3
+ 43y
2
19y + 1
8
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.896795
8.88264 10.0000
u = 0.248003 + 1.088360I
0.986960 10.0000
u = 0.248003 1.088360I
0.986960 10.0000
u = 0.448397 + 1.266170I
8.88264 10.0000
u = 0.448397 1.266170I
8.88264 10.0000
u = 0.496006
0.986960 10.0000
9
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
7
(u
6
+ 2u
4
u
3
+ u
2
u 1)(u
16
+ u
15
+ ··· + 2u + 1)
c
3
, c
6
, c
8
c
9
((u
2
u 1)
3
)(u
16
+ 2u
15
+ ··· + u + 2)
c
4
(u
6
+ 4u
5
+ 6u
4
+ u
3
5u
2
3u + 1)(u
16
+ 9u
15
+ ··· + 2u + 1)
c
5
, c
10
(u
6
+ 2u
4
u
3
+ u
2
u 1)(u
16
+ u
15
+ ··· + u
2
+ 1)
10
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
7
(y
6
+ 4y
5
+ 6y
4
+ y
3
5y
2
3y + 1)(y
16
+ 13y
15
+ ··· + 2y + 1)
c
3
, c
6
, c
8
c
9
((y
2
3y + 1)
3
)(y
16
18y
15
+ ··· + 19y + 4)
c
4
(y
6
4y
5
+ ··· 19y + 1)(y
16
3y
15
+ ··· 2y + 1)
c
5
, c
10
(y
6
+ 4y
5
+ 6y
4
+ y
3
5y
2
3y + 1)(y
16
+ 9y
15
+ ··· + 2y + 1)
11