12a
0260
(K12a
0260
)
A knot diagram
1
Linearized knot diagam
3 6 7 10 1 2 11 5 12 8 4 9
Solving Sequence
2,6
3 7
4,11
8 12 1 5 10 9
c
2
c
6
c
3
c
7
c
11
c
1
c
5
c
10
c
9
c
4
, c
8
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h−1.75234 × 10
17
u
39
+ 5.61074 × 10
17
u
38
+ ··· + 1.58801 × 10
18
b 1.77103 × 10
18
,
9.73786 × 10
17
u
39
2.24750 × 10
17
u
38
+ ··· + 3.17601 × 10
18
a + 6.50880 × 10
18
,
u
40
+ 2u
39
+ ··· 15u 4i
I
u
2
= h142u
29
a + u
29
+ ··· 811a + 77, 4u
28
a + u
29
+ ··· 5a + 16, u
30
+ u
29
+ ··· + u 1i
I
u
3
= h2u
4
2u
3
+ 2u
2
+ 2b u, 2u
2
+ 2a + u 2, u
5
u
4
+ 2u
3
u
2
+ u 1i
I
u
4
= h−au + b 2a + u + 1, a
2
2a + 2, u
2
+ u + 1i
* 4 irreducible components of dim
C
= 0, with total 109 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−1.75 × 10
17
u
39
+ 5.61 × 10
17
u
38
+ · · · + 1.59 × 10
18
b 1.77 ×
10
18
, 9.74 × 10
17
u
39
2.25 × 10
17
u
38
+ · · · + 3.18 × 10
18
a + 6.51 ×
10
18
, u
40
+ 2u
39
+ · · · 15u 4i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
u
2
a
7
=
u
u
a
4
=
u
4
+ u
2
+ 1
u
4
a
11
=
0.306607u
39
+ 0.0707647u
38
+ ··· 2.18335u 2.04936
0.110349u
39
0.353320u
38
+ ··· + 4.43538u + 1.11525
a
8
=
0.330016u
39
+ 0.209936u
38
+ ··· 2.54790u 1.41013
0.167912u
39
0.146809u
38
+ ··· + 3.63862u + 0.864836
a
12
=
0.233887u
39
+ 0.0964315u
38
+ ··· 2.14298u 1.71555
0.223896u
39
+ 0.0820644u
38
+ ··· + 1.09448u + 0.165309
a
1
=
u
2
+ 1
u
4
a
5
=
u
5
+ 2u
3
+ u
u
7
u
5
+ u
a
10
=
0.606364u
39
+ 0.274704u
38
+ ··· 4.91727u 2.84677
0.385943u
39
0.202353u
38
+ ··· + 5.39621u + 1.32664
a
9
=
0.263635u
39
+ 0.0269093u
38
+ ··· 1.67340u 1.47960
0.148444u
39
0.225204u
38
+ ··· + 3.90113u + 0.775015
(ii) Obstruction class = 1
(iii) Cusp Shapes =
1027807058031671441
794003375424954487
u
39
7796249979768242351
3176013501699817948
u
38
+ ···
1978648037828171537
794003375424954487
u +
67049658634384246
794003375424954487
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
40
+ 22u
39
+ ··· u + 16
c
2
, c
6
u
40
2u
39
+ ··· + 15u 4
c
3
, c
5
u
40
+ 2u
39
+ ··· + 871u 676
c
4
u
40
3u
39
+ ··· + 512u + 2048
c
7
, c
9
, c
10
c
12
u
40
5u
39
+ ··· 3u 1
c
8
, c
11
32(32u
40
+ 48u
39
+ ··· + 8u + 4)
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
40
6y
39
+ ··· 3905y + 256
c
2
, c
6
y
40
+ 22y
39
+ ··· y + 16
c
3
, c
5
y
40
34y
39
+ ··· + 2269839y + 456976
c
4
y
40
13y
39
+ ··· 63176704y + 4194304
c
7
, c
9
, c
10
c
12
y
40
+ 27y
39
+ ··· + 25y + 1
c
8
, c
11
1024(1024y
40
27904y
39
+ ··· + 16y + 16)
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.748783 + 0.635787I
a = 0.497441 0.487921I
b = 0.443502 + 0.321931I
3.86456 4.42335I 6.59807 + 7.34601I
u = 0.748783 0.635787I
a = 0.497441 + 0.487921I
b = 0.443502 0.321931I
3.86456 + 4.42335I 6.59807 7.34601I
u = 0.370444 + 0.884043I
a = 0.741241 0.879542I
b = 0.990076 + 0.305719I
1.27740 + 1.88898I 6.0015 15.6995I
u = 0.370444 0.884043I
a = 0.741241 + 0.879542I
b = 0.990076 0.305719I
1.27740 1.88898I 6.0015 + 15.6995I
u = 0.936692 + 0.132944I
a = 0.36069 2.07229I
b = 0.283700 0.679214I
10.28620 2.94658I 8.50665 + 2.50672I
u = 0.936692 0.132944I
a = 0.36069 + 2.07229I
b = 0.283700 + 0.679214I
10.28620 + 2.94658I 8.50665 2.50672I
u = 0.893287 + 0.111704I
a = 0.24516 + 2.54481I
b = 0.611222 + 0.896510I
11.6323 + 12.6478I 5.02011 6.24043I
u = 0.893287 0.111704I
a = 0.24516 2.54481I
b = 0.611222 0.896510I
11.6323 12.6478I 5.02011 + 6.24043I
u = 0.433282 + 1.016950I
a = 0.826445 + 0.289312I
b = 1.227630 + 0.661551I
1.48385 1.77946I 1.213579 + 0.177328I
u = 0.433282 1.016950I
a = 0.826445 0.289312I
b = 1.227630 0.661551I
1.48385 + 1.77946I 1.213579 0.177328I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.735196 + 0.474957I
a = 0.73676 + 1.52515I
b = 0.299735 + 0.089122I
4.66772 7.25009I 3.73082 + 5.45853I
u = 0.735196 0.474957I
a = 0.73676 1.52515I
b = 0.299735 0.089122I
4.66772 + 7.25009I 3.73082 5.45853I
u = 0.590773 + 1.005950I
a = 0.968619 + 0.798321I
b = 2.11021 + 1.04129I
6.21633 + 12.24890I 5.37332 9.94766I
u = 0.590773 1.005950I
a = 0.968619 0.798321I
b = 2.11021 1.04129I
6.21633 12.24890I 5.37332 + 9.94766I
u = 0.691554 + 0.944218I
a = 0.219338 0.024885I
b = 0.996837 0.702945I
4.74262 0.98558I 10.53556 1.39688I
u = 0.691554 0.944218I
a = 0.219338 + 0.024885I
b = 0.996837 + 0.702945I
4.74262 + 0.98558I 10.53556 + 1.39688I
u = 0.429290 + 1.094810I
a = 1.52361 + 0.07658I
b = 2.25201 + 0.30626I
1.51361 4.99339I 1.46170 + 7.63475I
u = 0.429290 1.094810I
a = 1.52361 0.07658I
b = 2.25201 0.30626I
1.51361 + 4.99339I 1.46170 7.63475I
u = 0.810513
a = 1.68768
b = 0.0637912
1.48600 8.82010
u = 0.298599 + 0.749021I
a = 0.230770 + 0.654861I
b = 0.010961 + 0.514630I
0.340785 1.228130I 3.72246 + 5.05532I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.298599 0.749021I
a = 0.230770 0.654861I
b = 0.010961 0.514630I
0.340785 + 1.228130I 3.72246 5.05532I
u = 0.043335 + 1.221830I
a = 1.41988 + 0.07791I
b = 2.52419 0.17469I
10.36550 5.41067I 11.07269 + 4.06686I
u = 0.043335 1.221830I
a = 1.41988 0.07791I
b = 2.52419 + 0.17469I
10.36550 + 5.41067I 11.07269 4.06686I
u = 0.340574 + 0.682840I
a = 0.201912 1.203320I
b = 1.136840 0.348081I
1.86966 + 1.36297I 7.37182 + 2.84076I
u = 0.340574 0.682840I
a = 0.201912 + 1.203320I
b = 1.136840 + 0.348081I
1.86966 1.36297I 7.37182 2.84076I
u = 0.732733
a = 0.0215748
b = 0.419703
1.91322 6.72230
u = 0.455122 + 1.187290I
a = 0.297888 + 0.394001I
b = 0.358967 + 0.124690I
5.28776 + 4.30879I 10.28965 3.19866I
u = 0.455122 1.187290I
a = 0.297888 0.394001I
b = 0.358967 0.124690I
5.28776 4.30879I 10.28965 + 3.19866I
u = 0.459206 + 1.219680I
a = 0.496160 + 0.913959I
b = 0.85669 + 1.97796I
5.08353 4.54254I 11.30086 + 4.03212I
u = 0.459206 1.219680I
a = 0.496160 0.913959I
b = 0.85669 1.97796I
5.08353 + 4.54254I 11.30086 4.03212I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.395526 + 1.274220I
a = 1.88050 + 0.61513I
b = 2.81622 0.05833I
15.9475 + 8.1867I 9.06394 3.34621I
u = 0.395526 1.274220I
a = 1.88050 0.61513I
b = 2.81622 + 0.05833I
15.9475 8.1867I 9.06394 + 3.34621I
u = 0.521628 + 1.236120I
a = 2.58052 + 0.56454I
b = 3.72507 + 0.61373I
15.0274 17.7587I 7.82233 + 9.25326I
u = 0.521628 1.236120I
a = 2.58052 0.56454I
b = 3.72507 0.61373I
15.0274 + 17.7587I 7.82233 9.25326I
u = 0.380735 + 1.301160I
a = 1.75721 0.48165I
b = 2.71281 0.14779I
14.8538 + 1.6038I 12.02430 0.97260I
u = 0.380735 1.301160I
a = 1.75721 + 0.48165I
b = 2.71281 + 0.14779I
14.8538 1.6038I 12.02430 + 0.97260I
u = 0.538772 + 1.252000I
a = 1.97956 0.36072I
b = 2.92363 0.63492I
13.7050 + 8.2667I 10.58240 5.91047I
u = 0.538772 1.252000I
a = 1.97956 + 0.36072I
b = 2.92363 + 0.63492I
13.7050 8.2667I 10.58240 + 5.91047I
u = 0.481597 + 0.152677I
a = 0.83330 1.69163I
b = 0.018409 0.472499I
1.02330 + 1.25064I 5.09440 3.99293I
u = 0.481597 0.152677I
a = 0.83330 + 1.69163I
b = 0.018409 + 0.472499I
1.02330 1.25064I 5.09440 + 3.99293I
8
II. I
u
2
=
h142u
29
a+u
29
+· · ·811a+77, 4u
28
a+u
29
+· · ·5a +16, u
30
+u
29
+· · ·+u1i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
u
2
a
7
=
u
u
a
4
=
u
4
+ u
2
+ 1
u
4
a
11
=
a
0.181354au
29
0.00127714u
29
+ ··· + 1.03576a 0.0983397
a
8
=
1.07791au
29
1.96424u
29
+ ··· 0.00127714a + 2.75351
1.96424au
29
1.90166u
29
+ ··· + 0.246488a + 3.57216
a
12
=
0.494253au
29
0.609195u
29
+ ··· + 0.0574713a + 0.0919540
0.132822au
29
0.365262u
29
+ ··· + 0.227331a + 0.874840
a
1
=
u
2
+ 1
u
4
a
5
=
u
5
+ 2u
3
+ u
u
7
u
5
+ u
a
10
=
u
29
+ 8u
27
+ ··· + 4u
3
+ u
u
29
+ 7u
27
+ ··· u
3
u
a
9
=
1.03576au
29
2.09834u
29
+ ··· 0.246488a + 1.42784
0.937420au
29
+ 0.922095u
29
+ ··· + 0.181354a + 2.00128
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
29
4u
28
32u
27
28u
26
120u
25
96u
24
260u
23
196u
22
332u
21
256u
20
196u
19
204u
18
+ 76u
17
72u
16
+ 224u
15
+ 52u
14
+ 136u
13
+
108u
12
12u
11
+ 100u
10
60u
9
+ 44u
8
32u
7
12u
6
8u
5
24u
4
+ 8u
3
12u
2
+ 8u 6
9
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
30
+ 17u
29
+ ··· u + 1)
2
c
2
, c
6
(u
30
u
29
+ ··· u 1)
2
c
3
, c
5
(u
30
+ u
29
+ ··· + 7u 1)
2
c
4
(u
30
+ u
29
+ ··· + u 1)
2
c
7
, c
9
, c
10
c
12
u
60
+ 11u
59
+ ··· + 20u + 1
c
8
, c
11
u
60
+ 5u
59
+ ··· 23472726u + 8156149
10
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
30
7y
29
+ ··· 25y + 1)
2
c
2
, c
6
(y
30
+ 17y
29
+ ··· y + 1)
2
c
3
, c
5
(y
30
31y
29
+ ··· 49y + 1)
2
c
4
(y
30
11y
29
+ ··· y + 1)
2
c
7
, c
9
, c
10
c
12
y
60
+ 43y
59
+ ··· + 64y + 1
c
8
, c
11
y
60
37y
59
+ ··· 1403816325059308y + 66522766510201
11
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.095027 + 1.028250I
a = 1.034680 + 0.226441I
b = 2.30549 + 0.52767I
5.04140 2.04857I 7.94351 + 2.92796I
u = 0.095027 + 1.028250I
a = 0.716670 + 0.339240I
b = 0.426153 0.394651I
5.04140 2.04857I 7.94351 + 2.92796I
u = 0.095027 1.028250I
a = 1.034680 0.226441I
b = 2.30549 0.52767I
5.04140 + 2.04857I 7.94351 2.92796I
u = 0.095027 1.028250I
a = 0.716670 0.339240I
b = 0.426153 + 0.394651I
5.04140 + 2.04857I 7.94351 2.92796I
u = 0.486868 + 0.916512I
a = 0.940915 0.299954I
b = 1.039270 0.311684I
1.61342 2.06909I 0.15841 + 3.38718I
u = 0.486868 + 0.916512I
a = 0.447231 + 0.917418I
b = 1.24616 + 1.37787I
1.61342 2.06909I 0.15841 + 3.38718I
u = 0.486868 0.916512I
a = 0.940915 + 0.299954I
b = 1.039270 + 0.311684I
1.61342 + 2.06909I 0.15841 3.38718I
u = 0.486868 0.916512I
a = 0.447231 0.917418I
b = 1.24616 1.37787I
1.61342 + 2.06909I 0.15841 3.38718I
u = 0.336716 + 1.031390I
a = 0.398995 + 0.561283I
b = 1.50734 0.06821I
6.92657 + 2.97945I 9.92079 5.34085I
u = 0.336716 + 1.031390I
a = 0.64157 + 1.48251I
b = 1.74824 + 1.30378I
6.92657 + 2.97945I 9.92079 5.34085I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.336716 1.031390I
a = 0.398995 0.561283I
b = 1.50734 + 0.06821I
6.92657 2.97945I 9.92079 + 5.34085I
u = 0.336716 1.031390I
a = 0.64157 1.48251I
b = 1.74824 1.30378I
6.92657 2.97945I 9.92079 + 5.34085I
u = 0.500817 + 0.966472I
a = 0.522463 + 0.779303I
b = 0.877769 + 0.011516I
2.27531 + 7.42449I 2.02063 8.82247I
u = 0.500817 + 0.966472I
a = 0.759314 1.014940I
b = 1.98900 1.15324I
2.27531 + 7.42449I 2.02063 8.82247I
u = 0.500817 0.966472I
a = 0.522463 0.779303I
b = 0.877769 0.011516I
2.27531 7.42449I 2.02063 + 8.82247I
u = 0.500817 0.966472I
a = 0.759314 + 1.014940I
b = 1.98900 + 1.15324I
2.27531 7.42449I 2.02063 + 8.82247I
u = 0.272716 + 0.834978I
a = 4.75539 + 1.58121I
b = 5.93533 + 1.26168I
3.79299 1.32269I 1.12281 + 4.79072I
u = 0.272716 + 0.834978I
a = 2.73856 4.77786I
b = 1.76585 4.35750I
3.79299 1.32269I 1.12281 + 4.79072I
u = 0.272716 0.834978I
a = 4.75539 1.58121I
b = 5.93533 1.26168I
3.79299 + 1.32269I 1.12281 4.79072I
u = 0.272716 0.834978I
a = 2.73856 + 4.77786I
b = 1.76585 + 4.35750I
3.79299 + 1.32269I 1.12281 4.79072I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.856648
a = 0.36456 + 2.45841I
b = 0.369614 + 0.732227I
10.8641 7.49220
u = 0.856648
a = 0.36456 2.45841I
b = 0.369614 0.732227I
10.8641 7.49220
u = 0.851057 + 0.073998I
a = 1.134850 + 0.440270I
b = 0.235397 + 0.177357I
6.70542 + 6.72016I 3.40084 4.93754I
u = 0.851057 + 0.073998I
a = 0.02043 2.70525I
b = 0.471768 0.912252I
6.70542 + 6.72016I 3.40084 4.93754I
u = 0.851057 0.073998I
a = 1.134850 0.440270I
b = 0.235397 0.177357I
6.70542 6.72016I 3.40084 + 4.93754I
u = 0.851057 0.073998I
a = 0.02043 + 2.70525I
b = 0.471768 + 0.912252I
6.70542 6.72016I 3.40084 + 4.93754I
u = 0.814472 + 0.061657I
a = 0.211672 0.026337I
b = 0.622855 + 0.448979I
5.23568 1.35458I 1.234126 + 0.230757I
u = 0.814472 + 0.061657I
a = 0.71424 + 2.65174I
b = 0.706924 + 1.195690I
5.23568 1.35458I 1.234126 + 0.230757I
u = 0.814472 0.061657I
a = 0.211672 + 0.026337I
b = 0.622855 0.448979I
5.23568 + 1.35458I 1.234126 0.230757I
u = 0.814472 0.061657I
a = 0.71424 2.65174I
b = 0.706924 1.195690I
5.23568 + 1.35458I 1.234126 0.230757I
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.517153 + 0.543315I
a = 0.374179 + 1.229410I
b = 0.087079 + 0.755551I
0.57483 2.05267I 2.41797 + 3.48780I
u = 0.517153 + 0.543315I
a = 1.328260 + 0.442484I
b = 0.139959 0.267825I
0.57483 2.05267I 2.41797 + 3.48780I
u = 0.517153 0.543315I
a = 0.374179 1.229410I
b = 0.087079 0.755551I
0.57483 + 2.05267I 2.41797 3.48780I
u = 0.517153 0.543315I
a = 1.328260 0.442484I
b = 0.139959 + 0.267825I
0.57483 + 2.05267I 2.41797 3.48780I
u = 0.552271 + 0.456360I
a = 0.048193 + 0.721700I
b = 0.879122 + 0.103276I
0.86006 3.18388I 1.51706 + 3.33039I
u = 0.552271 + 0.456360I
a = 1.00716 1.45803I
b = 0.385363 + 0.145063I
0.86006 3.18388I 1.51706 + 3.33039I
u = 0.552271 0.456360I
a = 0.048193 0.721700I
b = 0.879122 0.103276I
0.86006 + 3.18388I 1.51706 3.33039I
u = 0.552271 0.456360I
a = 1.00716 + 1.45803I
b = 0.385363 0.145063I
0.86006 + 3.18388I 1.51706 3.33039I
u = 0.429988 + 1.221650I
a = 0.770876 0.449946I
b = 0.527325 0.034027I
9.03965 + 2.99724I 4.94829 3.11480I
u = 0.429988 + 1.221650I
a = 2.43427 + 1.26220I
b = 3.31200 + 0.90775I
9.03965 + 2.99724I 4.94829 3.11480I
15
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.429988 1.221650I
a = 0.770876 + 0.449946I
b = 0.527325 + 0.034027I
9.03965 2.99724I 4.94829 + 3.11480I
u = 0.429988 1.221650I
a = 2.43427 1.26220I
b = 3.31200 0.90775I
9.03965 2.99724I 4.94829 + 3.11480I
u = 0.484811 + 1.215220I
a = 0.098795 0.799736I
b = 0.458370 0.566062I
8.64541 + 6.07028I 4.34155 3.40396I
u = 0.484811 + 1.215220I
a = 2.83314 + 0.69066I
b = 3.72402 + 0.94519I
8.64541 + 6.07028I 4.34155 3.40396I
u = 0.484811 1.215220I
a = 0.098795 + 0.799736I
b = 0.458370 + 0.566062I
8.64541 6.07028I 4.34155 + 3.40396I
u = 0.484811 1.215220I
a = 2.83314 0.69066I
b = 3.72402 0.94519I
8.64541 6.07028I 4.34155 + 3.40396I
u = 0.420533 + 1.243280I
a = 0.106443 0.515997I
b = 0.26568 1.43136I
10.69750 + 2.28828I 7.38974 1.78470I
u = 0.420533 + 1.243280I
a = 2.05833 0.35082I
b = 3.04741 + 0.37403I
10.69750 + 2.28828I 7.38974 1.78470I
u = 0.420533 1.243280I
a = 0.106443 + 0.515997I
b = 0.26568 + 1.43136I
10.69750 2.28828I 7.38974 + 1.78470I
u = 0.420533 1.243280I
a = 2.05833 + 0.35082I
b = 3.04741 0.37403I
10.69750 2.28828I 7.38974 + 1.78470I
16
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.496075 + 1.226990I
a = 0.788632 0.515998I
b = 1.20409 1.35223I
10.1523 11.5895I 6.39391 + 7.89908I
u = 0.496075 + 1.226990I
a = 2.65406 0.36532I
b = 3.86845 0.40313I
10.1523 11.5895I 6.39391 + 7.89908I
u = 0.496075 1.226990I
a = 0.788632 + 0.515998I
b = 1.20409 + 1.35223I
10.1523 + 11.5895I 6.39391 7.89908I
u = 0.496075 1.226990I
a = 2.65406 + 0.36532I
b = 3.86845 + 0.40313I
10.1523 + 11.5895I 6.39391 7.89908I
u = 0.462371 + 1.241170I
a = 1.76758 0.00509I
b = 2.68786 0.84395I
14.5974 4.6970I 10.66421 + 3.29760I
u = 0.462371 + 1.241170I
a = 2.42951 + 0.13001I
b = 3.65543 + 0.03686I
14.5974 4.6970I 10.66421 + 3.29760I
u = 0.462371 1.241170I
a = 1.76758 + 0.00509I
b = 2.68786 + 0.84395I
14.5974 + 4.6970I 10.66421 3.29760I
u = 0.462371 1.241170I
a = 2.42951 0.13001I
b = 3.65543 0.03686I
14.5974 + 4.6970I 10.66421 3.29760I
u = 0.441992
a = 0.45986 + 1.89002I
b = 1.021210 0.572546I
4.34249 5.30020
u = 0.441992
a = 0.45986 1.89002I
b = 1.021210 + 0.572546I
4.34249 5.30020
17
III.
I
u
3
= h2u
4
2u
3
+ 2u
2
+ 2b u, 2u
2
+ 2a + u 2, u
5
u
4
+ 2u
3
u
2
+ u 1i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
u
2
a
7
=
u
u
a
4
=
u
4
+ u
2
+ 1
u
4
a
11
=
u
2
1
2
u + 1
u
4
+ u
3
u
2
+
1
2
u
a
8
=
u
2
+
1
2
u + 1
u
4
+ u
3
u
2
+
3
2
u
a
12
=
3
2
u
2
+
3
2
3
2
u
4
+ u
3
u
2
+ u
a
1
=
u
2
+ 1
u
4
a
5
=
u
4
+ u
2
+ 1
u
4
a
10
=
2u
2
+ 2
2u
4
+ 2u
3
2u
2
+ 2u
a
9
=
1
2
u
2
+
1
2
1
2
u
4
+ u
3
u
2
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes =
17
4
u
4
17
4
u
3
+
33
4
u
2
4u +
9
4
18
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
5
3u
4
+ 4u
3
u
2
u + 1
c
2
u
5
u
4
+ 2u
3
u
2
+ u 1
c
3
u
5
+ u
4
2u
3
u
2
+ u 1
c
4
u
5
c
5
u
5
u
4
2u
3
+ u
2
+ u + 1
c
6
u
5
+ u
4
+ 2u
3
+ u
2
+ u + 1
c
7
, c
9
(u + 1)
5
c
8
32(32u
5
16u
4
16u
3
+ 4u
2
+ 2u + 1)
c
10
, c
12
(u 1)
5
c
11
32(32u
5
+ 16u
4
16u
3
4u
2
+ 2u 1)
19
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
5
y
4
+ 8y
3
3y
2
+ 3y 1
c
2
, c
6
y
5
+ 3y
4
+ 4y
3
+ y
2
y 1
c
3
, c
5
y
5
5y
4
+ 8y
3
3y
2
y 1
c
4
y
5
c
7
, c
9
, c
10
c
12
(y 1)
5
c
8
, c
11
1024(1024y
5
1280y
4
+ 512y
3
48y
2
4y 1)
20
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.339110 + 0.822375I
a = 0.608249 0.968939I
b = 1.036800 + 0.070336I
1.31583 1.53058I 3.76579 4.07189I
u = 0.339110 0.822375I
a = 0.608249 + 0.968939I
b = 1.036800 0.070336I
1.31583 + 1.53058I 3.76579 + 4.07189I
u = 0.766826
a = 1.20461
b = 0.0994683
0.756147 3.58700
u = 0.455697 + 1.200150I
a = 0.460554 + 0.493736I
b = 0.73706 + 1.22197I
4.22763 + 4.40083I 0.40273 3.06842I
u = 0.455697 1.200150I
a = 0.460554 0.493736I
b = 0.73706 1.22197I
4.22763 4.40083I 0.40273 + 3.06842I
21
IV. I
u
4
= h−au + b 2a + u + 1, a
2
2a + 2, u
2
+ u + 1i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
u + 1
a
7
=
u
u
a
4
=
0
u
a
11
=
a
au + 2a u 1
a
8
=
a + u 2
a 3
a
12
=
a
a u 1
a
1
=
u
u
a
5
=
1
u + 1
a
10
=
au u
au u
a
9
=
au + a u 2
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u 4
22
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
6
(u
2
u + 1)
2
c
2
, c
5
(u
2
+ u + 1)
2
c
4
u
4
u
2
+ 1
c
7
, c
9
, c
10
c
12
(u
2
+ 1)
2
c
8
u
4
2u
3
+ 2u
2
4u + 4
c
11
u
4
+ 2u
3
+ 2u
2
+ 4u + 4
23
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
5
, c
6
(y
2
+ y + 1)
2
c
4
(y
2
y + 1)
2
c
7
, c
9
, c
10
c
12
(y + 1)
4
c
8
, c
11
y
4
4y
2
+ 16
24
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 1.00000 + 1.00000I
b = 0.13397 + 1.50000I
3.28987 2.02988I 6.00000 + 3.46410I
u = 0.500000 + 0.866025I
a = 1.00000 1.00000I
b = 1.86603 1.50000I
3.28987 2.02988I 6.00000 + 3.46410I
u = 0.500000 0.866025I
a = 1.00000 + 1.00000I
b = 1.86603 + 1.50000I
3.28987 + 2.02988I 6.00000 3.46410I
u = 0.500000 0.866025I
a = 1.00000 1.00000I
b = 0.13397 1.50000I
3.28987 + 2.02988I 6.00000 3.46410I
25
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
2
u + 1)
2
)(u
5
3u
4
+ ··· u + 1)(u
30
+ 17u
29
+ ··· u + 1)
2
· (u
40
+ 22u
39
+ ··· u + 16)
c
2
((u
2
+ u + 1)
2
)(u
5
u
4
+ ··· + u 1)(u
30
u
29
+ ··· u 1)
2
· (u
40
2u
39
+ ··· + 15u 4)
c
3
((u
2
u + 1)
2
)(u
5
+ u
4
+ ··· + u 1)(u
30
+ u
29
+ ··· + 7u 1)
2
· (u
40
+ 2u
39
+ ··· + 871u 676)
c
4
u
5
(u
4
u
2
+ 1)(u
30
+ u
29
+ ··· + u 1)
2
· (u
40
3u
39
+ ··· + 512u + 2048)
c
5
((u
2
+ u + 1)
2
)(u
5
u
4
+ ··· + u + 1)(u
30
+ u
29
+ ··· + 7u 1)
2
· (u
40
+ 2u
39
+ ··· + 871u 676)
c
6
((u
2
u + 1)
2
)(u
5
+ u
4
+ ··· + u + 1)(u
30
u
29
+ ··· u 1)
2
· (u
40
2u
39
+ ··· + 15u 4)
c
7
, c
9
((u + 1)
5
)(u
2
+ 1)
2
(u
40
5u
39
+ ··· 3u 1)
· (u
60
+ 11u
59
+ ··· + 20u + 1)
c
8
1024(u
4
2u
3
+ ··· 4u + 4)(32u
5
16u
4
+ ··· + 2u + 1)
· (32u
40
+ 48u
39
+ ··· + 8u + 4)
· (u
60
+ 5u
59
+ ··· 23472726u + 8156149)
c
10
, c
12
((u 1)
5
)(u
2
+ 1)
2
(u
40
5u
39
+ ··· 3u 1)
· (u
60
+ 11u
59
+ ··· + 20u + 1)
c
11
1024(u
4
+ 2u
3
+ ··· + 4u + 4)(32u
5
+ 16u
4
+ ··· + 2u 1)
· (32u
40
+ 48u
39
+ ··· + 8u + 4)
· (u
60
+ 5u
59
+ ··· 23472726u + 8156149)
26
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
2
+ y + 1)
2
(y
5
y
4
+ 8y
3
3y
2
+ 3y 1)
· ((y
30
7y
29
+ ··· 25y + 1)
2
)(y
40
6y
39
+ ··· 3905y + 256)
c
2
, c
6
((y
2
+ y + 1)
2
)(y
5
+ 3y
4
+ ··· y 1)(y
30
+ 17y
29
+ ··· y + 1)
2
· (y
40
+ 22y
39
+ ··· y + 16)
c
3
, c
5
(y
2
+ y + 1)
2
(y
5
5y
4
+ 8y
3
3y
2
y 1)
· (y
30
31y
29
+ ··· 49y + 1)
2
· (y
40
34y
39
+ ··· + 2269839y + 456976)
c
4
y
5
(y
2
y + 1)
2
(y
30
11y
29
+ ··· y + 1)
2
· (y
40
13y
39
+ ··· 63176704y + 4194304)
c
7
, c
9
, c
10
c
12
((y 1)
5
)(y + 1)
4
(y
40
+ 27y
39
+ ··· + 25y + 1)
· (y
60
+ 43y
59
+ ··· + 64y + 1)
c
8
, c
11
1048576(y
4
4y
2
+ 16)(1024y
5
1280y
4
+ ··· 4y 1)
· (1024y
40
27904y
39
+ ··· + 16y + 16)
· (y
60
37y
59
+ ··· 1403816325059308y + 66522766510201)
27