12a
0262
(K12a
0262
)
A knot diagram
1
Linearized knot diagam
3 6 7 11 9 2 12 5 1 8 4 10
Solving Sequence
3,6
2 7
1,9
10 5 8 11 4 12
c
2
c
6
c
1
c
9
c
5
c
8
c
10
c
4
c
12
c
3
, c
7
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h8u
32
16u
31
+ ··· + b + 9, u
32
3u
31
+ ··· + a + 3, u
33
2u
32
+ ··· + 2u 1i
* 1 irreducible components of dim
C
= 0, with total 33 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h8u
32
16u
31
+· · ·+b+9, u
32
3u
31
+· · ·+a+3, u
33
2u
32
+· · ·+2u1i
(i) Arc colorings
a
3
=
1
0
a
6
=
0
u
a
2
=
1
u
2
a
7
=
u
u
3
+ u
a
1
=
u
2
+ 1
u
2
a
9
=
u
32
+ 3u
31
+ ··· + 10u 3
8u
32
+ 16u
31
+ ··· + 27u 9
a
10
=
4u
31
8u
30
+ ··· + 19u 8
4u
32
+ 6u
31
+ ··· + 14u 4
a
5
=
3u
32
12u
31
+ ··· 24u + 9
2u
32
3u
31
+ ··· 15u + 4
a
8
=
12u
32
35u
31
+ ··· 48u + 17
6u
32
+ 11u
31
+ ··· + 10u 3
a
11
=
12u
32
15u
31
+ ··· + 3u 14
3u
32
11u
31
+ ··· 22u + 12
a
4
=
u
4
+ u
2
+ 1
u
6
+ 2u
4
+ u
2
a
12
=
14u
32
23u
31
+ ··· 9u 8
2u
32
9u
31
+ ··· 20u + 11
(ii) Obstruction class = 1
(iii) Cusp Shapes = 20u
32
13u
31
+ 159u
30
58u
29
+ 575u
28
25u
27
+ 1135u
26
+
552u
25
+ 1074u
24
+ 2154u
23
267u
22
+ 4203u
21
1896u
20
+ 4776u
19
1567u
18
+
2737u
17
+ 1151u
16
350u
15
+ 3593u
14
1677u
13
+ 3251u
12
624u
11
+ 989u
10
+
1026u
9
732u
8
+ 1548u
7
975u
6
+ 992u
5
556u
4
+ 318u
3
196u
2
+ 35u 42
2
(iv) u-Polynomials at the component
3
Crossings u-Polynomials at each crossing
c
1
u
33
18u
32
+ ··· 12u + 1
c
2
u
33
2u
32
+ ··· + 2u 1
c
3
u
33
+ 2u
32
+ ··· 2u 1
c
4
u
33
+ u
32
+ ··· u 1
c
5
u
33
+ 3u
32
+ ··· + 3u 1
c
6
u
33
+ 2u
32
+ ··· + 2u + 1
c
7
u
33
+ 2u
32
+ ··· + 2u + 1
c
8
u
33
3u
32
+ ··· + 3u + 1
c
9
u
33
+ 5u
32
+ ··· + 5u + 1
c
10
u
33
+ 6u
32
+ ··· + 12u + 1
c
11
u
33
u
32
+ ··· u + 1
c
12
u
33
5u
32
+ ··· + 5u 1
4
5
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
33
2y
32
+ ··· + 8y 1
c
2
, c
6
y
33
+ 18y
32
+ ··· 12y 1
c
3
y
33
22y
32
+ ··· 26y 1
c
4
, c
11
y
33
+ 23y
32
+ ··· + 13y 1
c
5
, c
8
y
33
37y
32
+ ··· + 13y 1
c
7
y
33
10y
32
+ ··· + 34y 1
c
9
, c
12
y
33
+ 21y
32
+ ··· 13y 1
c
10
y
33
10y
32
+ ··· + 30y 1
6
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.415757 + 0.879714I
a = 0.310927 + 0.116953I
b = 1.245100 + 0.447794I
0.28049 3.92650I 4.28046 + 8.45501I
u = 0.415757 0.879714I
a = 0.310927 0.116953I
b = 1.245100 0.447794I
0.28049 + 3.92650I 4.28046 8.45501I
u = 0.889089 + 0.341493I
a = 1.334450 + 0.044982I
b = 0.835473 0.925109I
6.37279 2.89979I 7.35601 + 2.74561I
u = 0.889089 0.341493I
a = 1.334450 0.044982I
b = 0.835473 + 0.925109I
6.37279 + 2.89979I 7.35601 2.74561I
u = 0.925009 + 0.139920I
a = 1.47738 + 0.02503I
b = 0.640026 0.713052I
7.59997 + 1.16632I 5.62381 + 0.53430I
u = 0.925009 0.139920I
a = 1.47738 0.02503I
b = 0.640026 + 0.713052I
7.59997 1.16632I 5.62381 0.53430I
u = 0.362523 + 1.024310I
a = 0.746326 0.488114I
b = 2.02961 + 1.06595I
6.88884 1.47204I 7.24631 0.05525I
u = 0.362523 1.024310I
a = 0.746326 + 0.488114I
b = 2.02961 1.06595I
6.88884 + 1.47204I 7.24631 + 0.05525I
u = 0.450656 + 0.786575I
a = 0.026429 + 0.336633I
b = 0.047044 + 1.053090I
0.012283 + 0.311664I 3.64526 0.95783I
u = 0.450656 0.786575I
a = 0.026429 0.336633I
b = 0.047044 1.053090I
0.012283 0.311664I 3.64526 + 0.95783I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.699677 + 0.526180I
a = 0.998558 + 0.221434I
b = 0.310310 + 0.195387I
3.61554 3.10551I 5.05153 + 3.45408I
u = 0.699677 0.526180I
a = 0.998558 0.221434I
b = 0.310310 0.195387I
3.61554 + 3.10551I 5.05153 3.45408I
u = 0.461345 + 1.031380I
a = 0.309219 0.530900I
b = 0.588642 + 0.498459I
1.18585 3.17980I 8.28309 + 4.12212I
u = 0.461345 1.031380I
a = 0.309219 + 0.530900I
b = 0.588642 0.498459I
1.18585 + 3.17980I 8.28309 4.12212I
u = 0.319392 + 1.139410I
a = 0.801591 1.128270I
b = 0.645311 0.002396I
10.97950 + 0.06682I 10.54672 0.14143I
u = 0.319392 1.139410I
a = 0.801591 + 1.128270I
b = 0.645311 + 0.002396I
10.97950 0.06682I 10.54672 + 0.14143I
u = 0.567598 + 1.073240I
a = 0.024768 0.681279I
b = 0.029381 0.576170I
5.33194 + 8.00776I 7.58671 6.67740I
u = 0.567598 1.073240I
a = 0.024768 + 0.681279I
b = 0.029381 + 0.576170I
5.33194 8.00776I 7.58671 + 6.67740I
u = 0.213741 + 0.747529I
a = 0.44378 + 1.36082I
b = 2.65599 0.82648I
5.67246 + 4.09164I 1.47347 8.31889I
u = 0.213741 0.747529I
a = 0.44378 1.36082I
b = 2.65599 + 0.82648I
5.67246 4.09164I 1.47347 + 8.31889I
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.044555 + 0.763029I
a = 0.26951 + 2.29758I
b = 1.035990 + 0.506927I
8.91211 + 1.56145I 7.74657 2.97681I
u = 0.044555 0.763029I
a = 0.26951 2.29758I
b = 1.035990 0.506927I
8.91211 1.56145I 7.74657 + 2.97681I
u = 0.454510 + 1.153340I
a = 0.284320 0.958356I
b = 0.99905 1.93065I
3.43511 + 4.06164I 1.84707 3.29080I
u = 0.454510 1.153340I
a = 0.284320 + 0.958356I
b = 0.99905 + 1.93065I
3.43511 4.06164I 1.84707 + 3.29080I
u = 0.369754 + 1.204530I
a = 0.469785 1.239170I
b = 0.478866 1.069080I
11.94570 2.89125I 9.51390 + 3.40460I
u = 0.369754 1.204530I
a = 0.469785 + 1.239170I
b = 0.478866 + 1.069080I
11.94570 + 2.89125I 9.51390 3.40460I
u = 0.491464 + 1.224780I
a = 0.115049 1.120650I
b = 1.80600 1.71244I
11.05150 6.20149I 8.51895 + 3.78482I
u = 0.491464 1.224780I
a = 0.115049 + 1.120650I
b = 1.80600 + 1.71244I
11.05150 + 6.20149I 8.51895 3.78482I
u = 0.570176 + 1.190950I
a = 0.053100 0.985645I
b = 1.63829 1.28317I
9.06173 + 8.29388I 8.92407 7.11050I
u = 0.570176 1.190950I
a = 0.053100 + 0.985645I
b = 1.63829 + 1.28317I
9.06173 8.29388I 8.92407 + 7.11050I
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.316420 + 0.565399I
a = 0.460695 + 1.226470I
b = 1.380710 + 0.272067I
0.381875 0.429677I 0.97944 3.23646I
u = 0.316420 0.565399I
a = 0.460695 1.226470I
b = 1.380710 0.272067I
0.381875 + 0.429677I 0.97944 + 3.23646I
u = 0.618289
a = 1.78836
b = 0.301684
0.353891 2.66570
10
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
u
33
18u
32
+ ··· 12u + 1
c
2
u
33
2u
32
+ ··· + 2u 1
c
3
u
33
+ 2u
32
+ ··· 2u 1
c
4
u
33
+ u
32
+ ··· u 1
c
5
u
33
+ 3u
32
+ ··· + 3u 1
c
6
u
33
+ 2u
32
+ ··· + 2u + 1
c
7
u
33
+ 2u
32
+ ··· + 2u + 1
c
8
u
33
3u
32
+ ··· + 3u + 1
c
9
u
33
+ 5u
32
+ ··· + 5u + 1
c
10
u
33
+ 6u
32
+ ··· + 12u + 1
c
11
u
33
u
32
+ ··· u + 1
c
12
u
33
5u
32
+ ··· + 5u 1
11
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
y
33
2y
32
+ ··· + 8y 1
c
2
, c
6
y
33
+ 18y
32
+ ··· 12y 1
c
3
y
33
22y
32
+ ··· 26y 1
c
4
, c
11
y
33
+ 23y
32
+ ··· + 13y 1
c
5
, c
8
y
33
37y
32
+ ··· + 13y 1
c
7
y
33
10y
32
+ ··· + 34y 1
c
9
, c
12
y
33
+ 21y
32
+ ··· 13y 1
c
10
y
33
10y
32
+ ··· + 30y 1
12