10
22
(K10a
112
)
A knot diagram
1
Linearized knot diagam
6 9 8 7 1 10 3 4 2 5
Solving Sequence
4,9
8 3 2 10 7 5 6 1
c
8
c
3
c
2
c
9
c
7
c
4
c
6
c
1
c
5
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= hu
24
u
23
+ ··· + 2u
2
+ 1i
* 1 irreducible components of dim
C
= 0, with total 24 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
24
u
23
+ · · · + 2u
2
+ 1i
(i) Arc colorings
a
4
=
0
u
a
9
=
1
0
a
8
=
1
u
2
a
3
=
u
u
3
+ u
a
2
=
u
3
+ 2u
u
3
+ u
a
10
=
u
6
3u
4
+ 2u
2
+ 1
u
6
2u
4
+ u
2
a
7
=
u
2
+ 1
u
4
2u
2
a
5
=
u
5
+ 2u
3
u
u
7
3u
5
+ 2u
3
+ u
a
6
=
u
16
+ 7u
14
19u
12
+ 22u
10
3u
8
14u
6
+ 6u
4
+ 2u
2
+ 1
u
16
+ 6u
14
14u
12
+ 14u
10
2u
8
6u
6
+ 4u
4
2u
2
a
1
=
u
18
7u
16
+ 20u
14
27u
12
+ 11u
10
+ 13u
8
14u
6
+ 3u
2
+ 1
u
20
+ 8u
18
26u
16
+ 40u
14
19u
12
24u
10
+ 30u
8
9u
4
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 4u
21
+ 32u
19
+ 4u
18
108u
17
28u
16
+ 180u
15
+ 80u
14
104u
13
104u
12
120u
11
+ 24u
10
+ 216u
9
+ 88u
8
56u
7
76u
6
80u
5
12u
4
+ 36u
3
+ 24u
2
+ 8u + 2
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
, c
10
u
24
+ u
23
+ ··· + 2u
2
+ 1
c
2
, c
4
, c
9
u
24
3u
23
+ ··· 8u + 1
c
3
, c
7
, c
8
u
24
+ u
23
+ ··· + 2u
2
+ 1
c
6
u
24
3u
23
+ ··· + 20u 7
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
, c
10
y
24
23y
23
+ ··· + 4y + 1
c
2
, c
4
, c
9
y
24
+ 25y
23
+ ··· 20y + 1
c
3
, c
7
, c
8
y
24
19y
23
+ ··· + 4y + 1
c
6
y
24
11y
23
+ ··· 904y + 49
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.047552 + 0.882738I
12.21820 + 5.35992I 5.68286 3.17670I
u = 0.047552 0.882738I
12.21820 5.35992I 5.68286 + 3.17670I
u = 0.023946 + 0.850260I
5.90820 2.14805I 2.49248 + 3.24690I
u = 0.023946 0.850260I
5.90820 + 2.14805I 2.49248 3.24690I
u = 0.832524
3.20914 1.52540
u = 1.20293
2.53343 1.89060
u = 1.293390 + 0.128068I
4.64383 + 2.66216I 8.07524 4.83074I
u = 1.293390 0.128068I
4.64383 2.66216I 8.07524 + 4.83074I
u = 1.234200 + 0.427679I
8.55472 0.67393I 2.54072 0.18139I
u = 1.234200 0.427679I
8.55472 + 0.67393I 2.54072 + 0.18139I
u = 0.691969
3.21354 0.806220
u = 1.30821
2.22926 4.75390
u = 1.252440 + 0.391136I
2.10558 2.30642I 0.925091 + 0.098908I
u = 1.252440 0.391136I
2.10558 + 2.30642I 0.925091 0.098908I
u = 1.317160 + 0.196052I
0.01480 5.67994I 2.05445 + 5.89837I
u = 1.317160 0.196052I
0.01480 + 5.67994I 2.05445 5.89837I
u = 1.291330 + 0.388939I
1.81113 + 6.59660I 1.74384 6.15928I
u = 1.291330 0.388939I
1.81113 6.59660I 1.74384 + 6.15928I
u = 1.311950 + 0.407404I
7.97363 9.98187I 1.73153 + 5.91019I
u = 1.311950 0.407404I
7.97363 + 9.98187I 1.73153 5.91019I
u = 0.240904 + 0.566295I
4.81497 + 3.00632I 4.21158 5.20782I
u = 0.240904 0.566295I
4.81497 3.00632I 4.21158 + 5.20782I
u = 0.208545 + 0.356460I
0.079333 0.910145I 1.70410 + 7.59691I
u = 0.208545 0.356460I
0.079333 + 0.910145I 1.70410 7.59691I
5
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
5
, c
10
u
24
+ u
23
+ ··· + 2u
2
+ 1
c
2
, c
4
, c
9
u
24
3u
23
+ ··· 8u + 1
c
3
, c
7
, c
8
u
24
+ u
23
+ ··· + 2u
2
+ 1
c
6
u
24
3u
23
+ ··· + 20u 7
6
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
5
, c
10
y
24
23y
23
+ ··· + 4y + 1
c
2
, c
4
, c
9
y
24
+ 25y
23
+ ··· 20y + 1
c
3
, c
7
, c
8
y
24
19y
23
+ ··· + 4y + 1
c
6
y
24
11y
23
+ ··· 904y + 49
7