12a
0269
(K12a
0269
)
A knot diagram
1
Linearized knot diagam
3 6 8 7 11 2 4 12 1 5 10 9
Solving Sequence
8,12
9 1
4,10
3 2 7 5 6 11
c
8
c
12
c
9
c
3
c
1
c
7
c
4
c
6
c
11
c
2
, c
5
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−8.62713 × 10
15
u
65
2.11985 × 10
16
u
64
+ ··· + 2.49267 × 10
16
b 1.13014 × 10
15
,
4.31598 × 10
16
u
65
+ 1.40820 × 10
17
u
64
+ ··· + 9.97068 × 10
16
a + 5.56705 × 10
17
, u
66
+ 4u
65
+ ··· + 35u + 4i
I
u
2
= h−83u
7
a
2
105u
7
a + ··· 2a + 166, 2u
7
a
2
+ 8u
7
a + ··· + 18a 6,
u
8
+ u
7
3u
6
2u
5
+ 3u
4
+ 2u 1i
I
u
3
= h−u
4
a + u
2
a + u
3
au + b + a u + 1, u
4
2u
2
a + u
3
+ a
2
2au 2u
2
+ 2a + 3,
u
5
+ u
4
2u
3
u
2
+ u 1i
I
u
4
= h−2a
3
a
2
+ b a, 2a
4
+ 3a
3
+ 4a
2
+ 3a + 1, u 1i
* 4 irreducible components of dim
C
= 0, with total 104 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−8.63 × 10
15
u
65
2.12 × 10
16
u
64
+ · · · + 2.49 × 10
16
b 1.13 ×
10
15
, 4.32 × 10
16
u
65
+ 1.41 × 10
17
u
64
+ · · · + 9.97 × 10
16
a + 5.57 ×
10
17
, u
66
+ 4u
65
+ · · · + 35u + 4i
(i) Arc colorings
a
8
=
1
0
a
12
=
0
u
a
9
=
1
u
2
a
1
=
u
u
3
+ u
a
4
=
0.432868u
65
1.41234u
64
+ ··· 25.5775u 5.58342
0.346100u
65
+ 0.850432u
64
+ ··· + 4.81724u + 0.0453386
a
10
=
u
2
+ 1
u
4
+ 2u
2
a
3
=
0.0867675u
65
0.561913u
64
+ ··· 20.7603u 5.53808
0.346100u
65
+ 0.850432u
64
+ ··· + 4.81724u + 0.0453386
a
2
=
0.00547462u
65
+ 0.184155u
64
+ ··· + 13.3969u + 1.98843
0.0754890u
65
0.133427u
64
+ ··· + 1.98495u + 0.305099
a
7
=
0.132128u
65
0.450532u
64
+ ··· 13.0108u 0.408261
0.468288u
65
+ 1.18384u
64
+ ··· + 9.40368u + 1.08447
a
5
=
0.410233u
65
1.26602u
64
+ ··· 24.2954u 3.94259
0.275978u
65
+ 0.641853u
64
+ ··· + 2.90510u 0.110199
a
6
=
0.114697u
65
0.539674u
64
+ ··· 18.9899u 3.33232
0.265315u
65
+ 0.589033u
64
+ ··· + 2.64364u 0.213478
a
11
=
u
5
2u
3
+ u
u
7
3u
5
+ 2u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
22848277210974797
49853400611938144
u
65
33245267932303681
49853400611938144
u
64
+···+
1408726762689068359
49853400611938144
u+
18620167407452593
12463350152984536
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
66
+ 24u
65
+ ··· + 5878u + 289
c
2
, c
6
u
66
2u
65
+ ··· 138u + 17
c
3
, c
4
, c
7
u
66
2u
65
+ ··· 186u + 17
c
5
, c
10
u
66
2u
65
+ ··· 16u + 64
c
8
, c
9
, c
12
u
66
4u
65
+ ··· 35u + 4
c
11
u
66
+ 24u
65
+ ··· 13056u + 4096
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
66
+ 48y
65
+ ··· + 10918642y + 83521
c
2
, c
6
y
66
+ 24y
65
+ ··· + 5878y + 289
c
3
, c
4
, c
7
y
66
+ 72y
65
+ ··· 9674y + 289
c
5
, c
10
y
66
24y
65
+ ··· + 13056y + 4096
c
8
, c
9
, c
12
y
66
56y
65
+ ··· 657y + 16
c
11
y
66
+ 28y
65
+ ··· 578879488y + 16777216
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.667544 + 0.679084I
a = 0.86928 1.38453I
b = 0.149820 + 1.369760I
1.68392 4.80194I 8.00000 + 6.16806I
u = 0.667544 0.679084I
a = 0.86928 + 1.38453I
b = 0.149820 1.369760I
1.68392 + 4.80194I 8.00000 6.16806I
u = 0.189066 + 0.903983I
a = 0.74953 2.41334I
b = 0.32275 + 1.48528I
6.85220 11.84780I 4.90258 + 7.91039I
u = 0.189066 0.903983I
a = 0.74953 + 2.41334I
b = 0.32275 1.48528I
6.85220 + 11.84780I 4.90258 7.91039I
u = 1.083740 + 0.168606I
a = 1.242980 + 0.094384I
b = 0.111698 + 0.687804I
1.18380 0.83133I 0
u = 1.083740 0.168606I
a = 1.242980 0.094384I
b = 0.111698 0.687804I
1.18380 + 0.83133I 0
u = 0.514125 + 0.739694I
a = 0.64446 + 1.40518I
b = 0.065420 1.343790I
2.12892 0.16897I 6.25009 + 0.21372I
u = 0.514125 0.739694I
a = 0.64446 1.40518I
b = 0.065420 + 1.343790I
2.12892 + 0.16897I 6.25009 0.21372I
u = 0.130215 + 0.881989I
a = 0.46791 + 2.65814I
b = 0.21538 1.51295I
8.94622 5.72427I 2.18443 + 3.66030I
u = 0.130215 0.881989I
a = 0.46791 2.65814I
b = 0.21538 + 1.51295I
8.94622 + 5.72427I 2.18443 3.66030I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.046270 + 0.417779I
a = 0.002021 0.327101I
b = 0.730735 0.378556I
1.82882 + 3.10174I 0
u = 1.046270 0.417779I
a = 0.002021 + 0.327101I
b = 0.730735 + 0.378556I
1.82882 3.10174I 0
u = 0.173783 + 0.831807I
a = 0.307675 0.785989I
b = 0.845661 + 0.377568I
0.84572 7.60212I 7.64898 + 8.09357I
u = 0.173783 0.831807I
a = 0.307675 + 0.785989I
b = 0.845661 0.377568I
0.84572 + 7.60212I 7.64898 8.09357I
u = 1.147790 + 0.229735I
a = 0.102586 + 1.241460I
b = 0.19773 1.58186I
5.40538 2.32156I 0
u = 1.147790 0.229735I
a = 0.102586 1.241460I
b = 0.19773 + 1.58186I
5.40538 + 2.32156I 0
u = 0.651446 + 0.470027I
a = 0.284563 + 0.188739I
b = 0.505053 + 0.174111I
3.20898 2.48763I 16.3622 + 5.4337I
u = 0.651446 0.470027I
a = 0.284563 0.188739I
b = 0.505053 0.174111I
3.20898 + 2.48763I 16.3622 5.4337I
u = 1.081520 + 0.529987I
a = 0.355349 + 1.221180I
b = 0.27716 1.46865I
4.13434 + 6.78830I 0
u = 1.081520 0.529987I
a = 0.355349 1.221180I
b = 0.27716 + 1.46865I
4.13434 6.78830I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.071965 + 0.786913I
a = 0.79882 + 2.76845I
b = 0.13150 1.53519I
9.78957 0.29681I 0.83343 + 1.63973I
u = 0.071965 0.786913I
a = 0.79882 2.76845I
b = 0.13150 + 1.53519I
9.78957 + 0.29681I 0.83343 1.63973I
u = 1.143660 + 0.471596I
a = 0.69893 1.38761I
b = 0.15146 + 1.48688I
5.84968 + 0.90599I 0
u = 1.143660 0.471596I
a = 0.69893 + 1.38761I
b = 0.15146 1.48688I
5.84968 0.90599I 0
u = 1.197360 + 0.317299I
a = 0.50038 1.39693I
b = 0.06232 + 1.59267I
6.36342 + 4.30106I 0
u = 1.197360 0.317299I
a = 0.50038 + 1.39693I
b = 0.06232 1.59267I
6.36342 4.30106I 0
u = 0.152582 + 0.737995I
a = 1.22497 2.53094I
b = 0.25990 + 1.50993I
8.27559 + 5.90450I 2.31324 3.36207I
u = 0.152582 0.737995I
a = 1.22497 + 2.53094I
b = 0.25990 1.50993I
8.27559 5.90450I 2.31324 + 3.36207I
u = 0.320231 + 0.651017I
a = 0.024784 0.974380I
b = 0.294810 0.021528I
2.21379 1.44886I 14.1875 + 3.2190I
u = 0.320231 0.651017I
a = 0.024784 + 0.974380I
b = 0.294810 + 0.021528I
2.21379 + 1.44886I 14.1875 3.2190I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.293670 + 0.097432I
a = 0.83619 + 1.14357I
b = 0.411001 + 0.084755I
4.64203 + 0.39162I 0
u = 1.293670 0.097432I
a = 0.83619 1.14357I
b = 0.411001 0.084755I
4.64203 0.39162I 0
u = 1.273160 + 0.262278I
a = 0.0679407 + 0.0552696I
b = 0.767866 0.639955I
2.07313 + 1.16836I 0
u = 1.273160 0.262278I
a = 0.0679407 0.0552696I
b = 0.767866 + 0.639955I
2.07313 1.16836I 0
u = 0.029929 + 0.683021I
a = 0.122246 1.180170I
b = 0.752881 + 0.483067I
1.78075 + 2.22287I 4.94550 3.02923I
u = 0.029929 0.683021I
a = 0.122246 + 1.180170I
b = 0.752881 0.483067I
1.78075 2.22287I 4.94550 + 3.02923I
u = 1.298880 + 0.280433I
a = 1.102570 + 0.814558I
b = 0.797418 0.354964I
2.38438 5.71634I 0
u = 1.298880 0.280433I
a = 1.102570 0.814558I
b = 0.797418 + 0.354964I
2.38438 + 5.71634I 0
u = 1.336040 + 0.139935I
a = 0.719400 0.528286I
b = 0.412382 + 1.037160I
3.31894 + 4.09533I 0
u = 1.336040 0.139935I
a = 0.719400 + 0.528286I
b = 0.412382 1.037160I
3.31894 4.09533I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.310840 + 0.346233I
a = 1.76278 1.08503I
b = 0.19081 + 1.48545I
5.46398 3.79450I 0
u = 1.310840 0.346233I
a = 1.76278 + 1.08503I
b = 0.19081 1.48545I
5.46398 + 3.79450I 0
u = 1.359560 + 0.312582I
a = 1.95538 + 0.79171I
b = 0.30460 1.46865I
3.49484 9.72291I 0
u = 1.359560 0.312582I
a = 1.95538 0.79171I
b = 0.30460 + 1.46865I
3.49484 + 9.72291I 0
u = 1.406180 + 0.050908I
a = 0.029210 + 0.760234I
b = 0.112046 + 1.346250I
0.11958 + 2.24868I 0
u = 1.406180 0.050908I
a = 0.029210 0.760234I
b = 0.112046 1.346250I
0.11958 2.24868I 0
u = 1.359320 + 0.386811I
a = 1.45863 1.35802I
b = 0.26962 + 1.52010I
4.25937 + 10.27340I 0
u = 1.359320 0.386811I
a = 1.45863 + 1.35802I
b = 0.26962 1.52010I
4.25937 10.27340I 0
u = 1.37498 + 0.35472I
a = 0.660231 + 0.823973I
b = 0.913737 0.350179I
4.04528 + 11.87690I 0
u = 1.37498 0.35472I
a = 0.660231 0.823973I
b = 0.913737 + 0.350179I
4.04528 11.87690I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.40590 + 0.25321I
a = 0.369639 + 0.895908I
b = 0.325622 0.180271I
7.67732 + 4.73918I 0
u = 1.40590 0.25321I
a = 0.369639 0.895908I
b = 0.325622 + 0.180271I
7.67732 4.73918I 0
u = 1.44306 + 0.07283I
a = 0.782868 0.235983I
b = 0.720079 0.061282I
9.98582 + 3.99160I 0
u = 1.44306 0.07283I
a = 0.782868 + 0.235983I
b = 0.720079 + 0.061282I
9.98582 3.99160I 0
u = 1.39679 + 0.38869I
a = 1.65483 + 1.20080I
b = 0.35968 1.48387I
1.8387 + 16.4870I 0
u = 1.39679 0.38869I
a = 1.65483 1.20080I
b = 0.35968 + 1.48387I
1.8387 16.4870I 0
u = 0.163945 + 0.521690I
a = 0.35960 + 1.64327I
b = 0.163625 0.872636I
1.42640 1.81968I 0.93847 + 5.51231I
u = 0.163945 0.521690I
a = 0.35960 1.64327I
b = 0.163625 + 0.872636I
1.42640 + 1.81968I 0.93847 5.51231I
u = 0.504824 + 0.128957I
a = 0.362986 0.060340I
b = 0.10469 1.49108I
5.85879 2.92426I 1.08545 + 1.98753I
u = 0.504824 0.128957I
a = 0.362986 + 0.060340I
b = 0.10469 + 1.49108I
5.85879 + 2.92426I 1.08545 1.98753I
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.48027 + 0.22599I
a = 0.539486 0.091494I
b = 0.035967 + 1.249290I
4.37053 + 3.52253I 0
u = 1.48027 0.22599I
a = 0.539486 + 0.091494I
b = 0.035967 1.249290I
4.37053 3.52253I 0
u = 1.51108 + 0.12609I
a = 0.789487 + 0.071213I
b = 0.241287 1.319070I
5.66868 + 7.39507I 0
u = 1.51108 0.12609I
a = 0.789487 0.071213I
b = 0.241287 + 1.319070I
5.66868 7.39507I 0
u = 0.149615 + 0.078620I
a = 0.80843 3.04085I
b = 0.363511 0.421563I
0.423006 1.307980I 4.48461 + 4.94953I
u = 0.149615 0.078620I
a = 0.80843 + 3.04085I
b = 0.363511 + 0.421563I
0.423006 + 1.307980I 4.48461 4.94953I
11
II. I
u
2
= h−83u
7
a
2
105u
7
a + · · · 2a + 166, 2u
7
a
2
+ 8u
7
a + · · · + 18a
6, u
8
+ u
7
3u
6
2u
5
+ 3u
4
+ 2u 1i
(i) Arc colorings
a
8
=
1
0
a
12
=
0
u
a
9
=
1
u
2
a
1
=
u
u
3
+ u
a
4
=
a
0.167002a
2
u
7
+ 0.211268au
7
+ ··· + 0.00402414a 0.334004
a
10
=
u
2
+ 1
u
4
+ 2u
2
a
3
=
0.167002a
2
u
7
+ 0.211268au
7
+ ··· + 1.00402a 0.334004
0.167002a
2
u
7
+ 0.211268au
7
+ ··· + 0.00402414a 0.334004
a
2
=
a
0.167002a
2
u
7
0.211268au
7
+ ··· 0.00402414a + 0.334004
a
7
=
0.513078a
2
u
7
0.0965795au
7
+ ··· 1.44266a + 1.31187
0.197183a
2
u
7
+ 0.0824950au
7
+ ··· + 0.651911a 0.680080
a
5
=
u
3
+ 2u
u
3
u
a
6
=
1
0
a
11
=
u
5
2u
3
+ u
u
7
3u
5
+ 2u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
6
+ 12u
4
4u
3
8u
2
+ 8u 14
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
24
+ 16u
23
+ ··· 4u + 1
c
2
, c
3
, c
4
c
6
, c
7
u
24
+ 8u
22
+ ··· + 4u + 1
c
5
, c
10
(u
8
+ u
7
u
6
2u
5
+ u
4
+ 2u
3
2u 1)
3
c
8
, c
9
, c
12
(u
8
u
7
3u
6
+ 2u
5
+ 3u
4
2u 1)
3
c
11
(u
8
+ 3u
7
+ 7u
6
+ 10u
5
+ 11u
4
+ 10u
3
+ 6u
2
+ 4u + 1)
3
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
24
16y
23
+ ··· 76y + 1
c
2
, c
3
, c
4
c
6
, c
7
y
24
+ 16y
23
+ ··· 4y + 1
c
5
, c
10
(y
8
3y
7
+ 7y
6
10y
5
+ 11y
4
10y
3
+ 6y
2
4y + 1)
3
c
8
, c
9
, c
12
(y
8
7y
7
+ 19y
6
22y
5
+ 3y
4
+ 14y
3
6y
2
4y + 1)
3
c
11
(y
8
+ 5y
7
+ 11y
6
+ 6y
5
17y
4
34y
3
22y
2
4y + 1)
3
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.180120 + 0.268597I
a = 1.129310 0.679881I
b = 0.526710 + 0.542383I
1.04066 1.13123I 7.41522 + 0.51079I
u = 1.180120 + 0.268597I
a = 0.218627 + 0.497328I
b = 0.474274 + 0.744643I
1.04066 1.13123I 7.41522 + 0.51079I
u = 1.180120 + 0.268597I
a = 1.91067 + 2.43966I
b = 0.052436 1.287030I
1.04066 1.13123I 7.41522 + 0.51079I
u = 1.180120 0.268597I
a = 1.129310 + 0.679881I
b = 0.526710 0.542383I
1.04066 + 1.13123I 7.41522 0.51079I
u = 1.180120 0.268597I
a = 0.218627 0.497328I
b = 0.474274 0.744643I
1.04066 + 1.13123I 7.41522 0.51079I
u = 1.180120 0.268597I
a = 1.91067 2.43966I
b = 0.052436 + 1.287030I
1.04066 + 1.13123I 7.41522 0.51079I
u = 0.108090 + 0.747508I
a = 0.393429 + 0.915822I
b = 0.659970 0.577105I
2.15941 2.57849I 4.27708 + 3.56796I
u = 0.108090 + 0.747508I
a = 0.205881 + 1.226480I
b = 0.596595 0.782878I
2.15941 2.57849I 4.27708 + 3.56796I
u = 0.108090 + 0.747508I
a = 0.22979 3.79270I
b = 0.063375 + 1.359980I
2.15941 2.57849I 4.27708 + 3.56796I
u = 0.108090 0.747508I
a = 0.393429 0.915822I
b = 0.659970 + 0.577105I
2.15941 + 2.57849I 4.27708 3.56796I
15
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.108090 0.747508I
a = 0.205881 1.226480I
b = 0.596595 + 0.782878I
2.15941 + 2.57849I 4.27708 3.56796I
u = 0.108090 0.747508I
a = 0.22979 + 3.79270I
b = 0.063375 1.359980I
2.15941 + 2.57849I 4.27708 3.56796I
u = 1.37100
a = 1.122450 + 0.593787I
b = 0.381282 1.198390I
6.50273 13.8640
u = 1.37100
a = 1.122450 0.593787I
b = 0.381282 + 1.198390I
6.50273 13.8640
u = 1.37100
a = 0.586511
b = 0.762564
6.50273 13.8640
u = 1.334530 + 0.318930I
a = 0.635277 0.766647I
b = 0.788479 + 0.521654I
2.37968 + 6.44354I 9.42845 5.29417I
u = 1.334530 + 0.318930I
a = 0.1050070 0.0244005I
b = 0.661375 + 0.893964I
2.37968 + 6.44354I 9.42845 5.29417I
u = 1.334530 + 0.318930I
a = 1.30906 + 2.00264I
b = 0.12710 1.41562I
2.37968 + 6.44354I 9.42845 5.29417I
u = 1.334530 0.318930I
a = 0.635277 + 0.766647I
b = 0.788479 0.521654I
2.37968 6.44354I 9.42845 + 5.29417I
u = 1.334530 0.318930I
a = 0.1050070 + 0.0244005I
b = 0.661375 0.893964I
2.37968 6.44354I 9.42845 + 5.29417I
16
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.334530 0.318930I
a = 1.30906 2.00264I
b = 0.12710 + 1.41562I
2.37968 6.44354I 9.42845 + 5.29417I
u = 0.463640
a = 0.450478
b = 0.328520
0.845036 11.8940
u = 0.463640
a = 2.52220 + 3.30247I
b = 0.164260 1.039680I
0.845036 11.8940
u = 0.463640
a = 2.52220 3.30247I
b = 0.164260 + 1.039680I
0.845036 11.8940
17
III. I
u
3
= h−u
4
a + u
2
a + u
3
au + b + a u + 1, u
4
2u
2
a + u
3
+ a
2
2au 2u
2
+ 2a + 3, u
5
+ u
4
2u
3
u
2
+ u 1i
(i) Arc colorings
a
8
=
1
0
a
12
=
0
u
a
9
=
1
u
2
a
1
=
u
u
3
+ u
a
4
=
a
u
4
a u
2
a u
3
+ au a + u 1
a
10
=
u
2
+ 1
u
4
+ 2u
2
a
3
=
u
4
a u
2
a u
3
+ au + u 1
u
4
a u
2
a u
3
+ au a + u 1
a
2
=
u
4
a u
2
a u
3
+ au 1
u
4
a u
2
a 2u
3
+ au a + 2u 1
a
7
=
u
3
a + u
3
+ au + 2u
2
a
1
a
5
=
u
4
a + u
2
a + u
3
au + a u + 1
0
a
6
=
u
4
a u
3
a + u
4
2u
2
a + 2au u
2
a + u
u
4
a + u
4
2u
2
a + au u
2
a + u 1
a
11
=
u
4
+ u
2
+ 1
u
4
+ 2u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
3
+ 8u 12
18
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u 1)
10
c
2
, c
3
, c
4
c
6
, c
7
(u
2
+ 1)
5
c
5
, c
10
u
10
3u
8
+ 4u
6
u
4
u
2
+ 1
c
8
, c
9
(u
5
+ u
4
2u
3
u
2
+ u 1)
2
c
11
(u
5
+ 3u
4
+ 4u
3
+ u
2
u 1)
2
c
12
(u
5
u
4
2u
3
+ u
2
+ u + 1)
2
19
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y 1)
10
c
2
, c
3
, c
4
c
6
, c
7
(y + 1)
10
c
5
, c
10
(y
5
3y
4
+ 4y
3
y
2
y + 1)
2
c
8
, c
9
, c
12
(y
5
5y
4
+ 8y
3
3y
2
y 1)
2
c
11
(y
5
y
4
+ 8y
3
3y
2
+ 3y 1)
2
20
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.21774
a = 1.70062 + 1.07090I
b = 1.000000I
2.40108 9.48110
u = 1.21774
a = 1.70062 1.07090I
b = 1.000000I
2.40108 9.48110
u = 0.309916 + 0.549911I
a = 0.679539 0.876898I
b = 1.000000I
0.32910 1.53058I 8.51511 + 4.43065I
u = 0.309916 + 0.549911I
a = 1.11334 + 2.65842I
b = 1.000000I
0.32910 1.53058I 8.51511 + 4.43065I
u = 0.309916 0.549911I
a = 0.679539 + 0.876898I
b = 1.000000I
0.32910 + 1.53058I 8.51511 4.43065I
u = 0.309916 0.549911I
a = 1.11334 2.65842I
b = 1.000000I
0.32910 + 1.53058I 8.51511 4.43065I
u = 1.41878 + 0.21917I
a = 0.925786 0.670523I
b = 1.000000I
5.87256 + 4.40083I 12.74431 3.49859I
u = 1.41878 + 0.21917I
a = 0.0180453 0.1349390I
b = 1.000000I
5.87256 + 4.40083I 12.74431 3.49859I
u = 1.41878 0.21917I
a = 0.925786 + 0.670523I
b = 1.000000I
5.87256 4.40083I 12.74431 + 3.49859I
u = 1.41878 0.21917I
a = 0.0180453 + 0.1349390I
b = 1.000000I
5.87256 4.40083I 12.74431 + 3.49859I
21
IV. I
u
4
= h−2a
3
a
2
+ b a, 2a
4
+ 3a
3
+ 4a
2
+ 3a + 1, u 1i
(i) Arc colorings
a
8
=
1
0
a
12
=
0
1
a
9
=
1
1
a
1
=
1
0
a
4
=
a
2a
3
+ a
2
+ a
a
10
=
0
1
a
3
=
2a
3
+ a
2
+ 2a
2a
3
+ a
2
+ a
a
2
=
2a
3
+ a
2
+ 2a
2a
2
a
a
7
=
2a
3
+ 3a
2
+ 3a + 2
2a
2
a
a
5
=
0
2a + 1
a
6
=
0
2a + 1
a
11
=
0
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 14a
3
12a
2
14a 18
22
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
4
u
4
u
3
+ 3u
2
2u + 1
c
2
u
4
u
3
+ u
2
+ 1
c
5
, c
10
, c
11
u
4
c
6
u
4
+ u
3
+ u
2
+ 1
c
7
u
4
+ u
3
+ 3u
2
+ 2u + 1
c
8
, c
9
(u 1)
4
c
12
(u + 1)
4
23
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
c
7
y
4
+ 5y
3
+ 7y
2
+ 2y + 1
c
2
, c
6
y
4
+ y
3
+ 3y
2
+ 2y + 1
c
5
, c
10
, c
11
y
4
c
8
, c
9
, c
12
(y 1)
4
24
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0.173850 + 1.069070I
b = 0.10488 1.55249I
5.14581 3.16396I 10.48546 + 5.24252I
u = 1.00000
a = 0.173850 1.069070I
b = 0.10488 + 1.55249I
5.14581 + 3.16396I 10.48546 5.24252I
u = 1.00000
a = 0.576150 + 0.307015I
b = 0.395123 + 0.506844I
1.85594 + 1.41510I 12.38954 3.92814I
u = 1.00000
a = 0.576150 0.307015I
b = 0.395123 0.506844I
1.85594 1.41510I 12.38954 + 3.92814I
25
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
10
)(u
4
u
3
+ 3u
2
2u + 1)(u
24
+ 16u
23
+ ··· 4u + 1)
· (u
66
+ 24u
65
+ ··· + 5878u + 289)
c
2
((u
2
+ 1)
5
)(u
4
u
3
+ u
2
+ 1)(u
24
+ 8u
22
+ ··· + 4u + 1)
· (u
66
2u
65
+ ··· 138u + 17)
c
3
, c
4
((u
2
+ 1)
5
)(u
4
u
3
+ 3u
2
2u + 1)(u
24
+ 8u
22
+ ··· + 4u + 1)
· (u
66
2u
65
+ ··· 186u + 17)
c
5
, c
10
u
4
(u
8
+ u
7
u
6
2u
5
+ u
4
+ 2u
3
2u 1)
3
· (u
10
3u
8
+ 4u
6
u
4
u
2
+ 1)(u
66
2u
65
+ ··· 16u + 64)
c
6
((u
2
+ 1)
5
)(u
4
+ u
3
+ u
2
+ 1)(u
24
+ 8u
22
+ ··· + 4u + 1)
· (u
66
2u
65
+ ··· 138u + 17)
c
7
((u
2
+ 1)
5
)(u
4
+ u
3
+ 3u
2
+ 2u + 1)(u
24
+ 8u
22
+ ··· + 4u + 1)
· (u
66
2u
65
+ ··· 186u + 17)
c
8
, c
9
(u 1)
4
(u
5
+ u
4
2u
3
u
2
+ u 1)
2
· ((u
8
u
7
3u
6
+ 2u
5
+ 3u
4
2u 1)
3
)(u
66
4u
65
+ ··· 35u + 4)
c
11
u
4
(u
5
+ 3u
4
+ 4u
3
+ u
2
u 1)
2
· (u
8
+ 3u
7
+ 7u
6
+ 10u
5
+ 11u
4
+ 10u
3
+ 6u
2
+ 4u + 1)
3
· (u
66
+ 24u
65
+ ··· 13056u + 4096)
c
12
(u + 1)
4
(u
5
u
4
2u
3
+ u
2
+ u + 1)
2
· ((u
8
u
7
3u
6
+ 2u
5
+ 3u
4
2u 1)
3
)(u
66
4u
65
+ ··· 35u + 4)
26
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
10
)(y
4
+ 5y
3
+ ··· + 2y + 1)(y
24
16y
23
+ ··· 76y + 1)
· (y
66
+ 48y
65
+ ··· + 10918642y + 83521)
c
2
, c
6
((y + 1)
10
)(y
4
+ y
3
+ 3y
2
+ 2y + 1)(y
24
+ 16y
23
+ ··· 4y + 1)
· (y
66
+ 24y
65
+ ··· + 5878y + 289)
c
3
, c
4
, c
7
((y + 1)
10
)(y
4
+ 5y
3
+ ··· + 2y + 1)(y
24
+ 16y
23
+ ··· 4y + 1)
· (y
66
+ 72y
65
+ ··· 9674y + 289)
c
5
, c
10
y
4
(y
5
3y
4
+ 4y
3
y
2
y + 1)
2
· (y
8
3y
7
+ 7y
6
10y
5
+ 11y
4
10y
3
+ 6y
2
4y + 1)
3
· (y
66
24y
65
+ ··· + 13056y + 4096)
c
8
, c
9
, c
12
(y 1)
4
(y
5
5y
4
+ 8y
3
3y
2
y 1)
2
· (y
8
7y
7
+ 19y
6
22y
5
+ 3y
4
+ 14y
3
6y
2
4y + 1)
3
· (y
66
56y
65
+ ··· 657y + 16)
c
11
y
4
(y
5
y
4
+ 8y
3
3y
2
+ 3y 1)
2
· (y
8
+ 5y
7
+ 11y
6
+ 6y
5
17y
4
34y
3
22y
2
4y + 1)
3
· (y
66
+ 28y
65
+ ··· 578879488y + 16777216)
27