12a
0278
(K12a
0278
)
A knot diagram
1
Linearized knot diagam
3 6 8 9 2 12 10 4 5 1 7 11
Solving Sequence
5,9 1,10
11 4 8 3 2 7 12 6
c
9
c
10
c
4
c
8
c
3
c
1
c
7
c
12
c
6
c
2
, c
5
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h9.38441 × 10
39
u
74
+ 5.67453 × 10
39
u
73
+ ··· + 1.90771 × 10
40
b 5.20911 × 10
40
,
1.62029 × 10
40
u
74
8.80257 × 10
39
u
73
+ ··· + 1.90771 × 10
40
a + 1.14013 × 10
41
, u
75
+ u
74
+ ··· 12u 4i
I
u
2
= hb
2
2bu b + u + 3, 2a + u, u
2
2i
I
v
1
= ha, b v 1, v
2
+ v + 1i
* 3 irreducible components of dim
C
= 0, with total 81 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h9.38×10
39
u
74
+5.67×10
39
u
73
+· · ·+1.91×10
40
b5.21×10
40
, 1.62×
10
40
u
74
8.80×10
39
u
73
+· · ·+1.91×10
40
a+1.14×10
41
, u
75
+u
74
+· · ·12u4i
(i) Arc colorings
a
5
=
0
u
a
9
=
1
0
a
1
=
0.849339u
74
+ 0.461421u
73
+ ··· 10.4833u 5.97644
0.491921u
74
0.297453u
73
+ ··· + 0.593748u + 2.73056
a
10
=
1
u
2
a
11
=
0.524536u
74
0.696711u
73
+ ··· 8.34076u 5.63903
1.23043u
74
+ 1.30629u
73
+ ··· + 12.6838u + 6.35323
a
4
=
u
u
a
8
=
u
2
+ 1
u
2
a
3
=
u
3
2u
u
3
+ u
a
2
=
0.871842u
74
0.0410241u
73
+ ··· 10.2878u 6.19131
0.374527u
74
+ 0.413670u
73
+ ··· + 1.18849u + 2.97556
a
7
=
u
4
3u
2
+ 1
u
6
+ 2u
4
+ u
2
a
12
=
0.519955u
74
0.395542u
73
+ ··· 8.23310u 4.93826
1.16106u
74
+ 0.963015u
73
+ ··· + 11.8087u + 6.08819
a
6
=
0.174957u
74
0.182489u
73
+ ··· 8.40404u + 0.258482
0.672272u
74
+ 0.555135u
73
+ ··· 0.695264u 3.47423
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2.15821u
74
+ 0.754780u
73
+ ··· + 41.7200u + 28.2560
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
75
+ 39u
74
+ ··· + 417u + 49
c
2
, c
5
u
75
+ 3u
74
+ ··· 9u 7
c
3
, c
4
, c
8
c
9
u
75
+ u
74
+ ··· 12u 4
c
6
, c
11
u
75
2u
74
+ ··· + 6u + 1
c
7
u
75
+ 15u
74
+ ··· + 11264u + 1792
c
10
, c
12
u
75
+ 26u
74
+ ··· + 40u 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
75
+ y
74
+ ··· 65623y 2401
c
2
, c
5
y
75
39y
74
+ ··· + 417y 49
c
3
, c
4
, c
8
c
9
y
75
85y
74
+ ··· + 272y 16
c
6
, c
11
y
75
+ 26y
74
+ ··· + 40y 1
c
7
y
75
+ 19y
74
+ ··· + 128483328y 3211264
c
10
, c
12
y
75
+ 50y
74
+ ··· + 1936y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.992360 + 0.148515I
a = 0.576542 + 0.197096I
b = 0.309129 + 0.852785I
4.89966 0.48043I 0
u = 0.992360 0.148515I
a = 0.576542 0.197096I
b = 0.309129 0.852785I
4.89966 + 0.48043I 0
u = 0.931734 + 0.252335I
a = 0.485930 + 0.342374I
b = 0.456955 + 0.767589I
4.81883 5.04031I 0
u = 0.931734 0.252335I
a = 0.485930 0.342374I
b = 0.456955 0.767589I
4.81883 + 5.04031I 0
u = 0.653012 + 0.614677I
a = 2.17237 + 0.30058I
b = 0.915870 + 0.280175I
0.19940 + 12.18710I 0
u = 0.653012 0.614677I
a = 2.17237 0.30058I
b = 0.915870 0.280175I
0.19940 12.18710I 0
u = 0.665614 + 0.580959I
a = 1.80487 + 0.31047I
b = 0.671344 + 0.328501I
0.97505 6.50542I 0
u = 0.665614 0.580959I
a = 1.80487 0.31047I
b = 0.671344 0.328501I
0.97505 + 6.50542I 0
u = 0.675215 + 0.522999I
a = 1.99689 + 0.08186I
b = 0.802298 0.038855I
2.37245 7.04723I 0. + 7.05593I
u = 0.675215 0.522999I
a = 1.99689 0.08186I
b = 0.802298 + 0.038855I
2.37245 + 7.04723I 0. 7.05593I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.697751 + 0.462610I
a = 1.71652 0.07976I
b = 0.612037 0.027947I
3.26431 + 1.50095I 7.89789 1.80538I
u = 0.697751 0.462610I
a = 1.71652 + 0.07976I
b = 0.612037 + 0.027947I
3.26431 1.50095I 7.89789 + 1.80538I
u = 0.567607 + 0.560344I
a = 1.81116 0.63783I
b = 0.795511 + 0.950961I
5.29697 + 5.95713I 3.09818 7.38755I
u = 0.567607 0.560344I
a = 1.81116 + 0.63783I
b = 0.795511 0.950961I
5.29697 5.95713I 3.09818 + 7.38755I
u = 0.323852 + 0.694398I
a = 0.48580 1.64617I
b = 0.386203 + 0.980438I
1.18225 7.78836I 0.62681 + 5.55340I
u = 0.323852 0.694398I
a = 0.48580 + 1.64617I
b = 0.386203 0.980438I
1.18225 + 7.78836I 0.62681 5.55340I
u = 0.591460 + 0.442465I
a = 0.851460 0.535667I
b = 0.167713 + 0.970251I
0.68077 3.94349I 4.08468 + 7.42217I
u = 0.591460 0.442465I
a = 0.851460 + 0.535667I
b = 0.167713 0.970251I
0.68077 + 3.94349I 4.08468 7.42217I
u = 0.282851 + 0.667116I
a = 0.407429 1.153780I
b = 0.460517 + 0.731193I
0.16240 + 2.29905I 2.31301 0.75455I
u = 0.282851 0.667116I
a = 0.407429 + 1.153780I
b = 0.460517 0.731193I
0.16240 2.29905I 2.31301 + 0.75455I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.399552 + 0.588174I
a = 1.69508 1.30618I
b = 0.152200 + 0.661165I
5.79484 2.02438I 5.06771 + 0.43859I
u = 0.399552 0.588174I
a = 1.69508 + 1.30618I
b = 0.152200 0.661165I
5.79484 + 2.02438I 5.06771 0.43859I
u = 1.287660 + 0.137546I
a = 0.108222 + 0.102118I
b = 0.041567 1.232660I
4.69216 + 0.68186I 0
u = 1.287660 0.137546I
a = 0.108222 0.102118I
b = 0.041567 + 1.232660I
4.69216 0.68186I 0
u = 0.477179 + 0.487322I
a = 1.37904 + 0.78397I
b = 0.597926 0.495834I
2.38002 1.71377I 0.33796 + 4.28154I
u = 0.477179 0.487322I
a = 1.37904 0.78397I
b = 0.597926 + 0.495834I
2.38002 + 1.71377I 0.33796 4.28154I
u = 0.511035 + 0.444098I
a = 2.87952 0.72570I
b = 0.418047 + 0.120094I
2.37090 + 3.74638I 0.22703 6.74943I
u = 0.511035 0.444098I
a = 2.87952 + 0.72570I
b = 0.418047 0.120094I
2.37090 3.74638I 0.22703 + 6.74943I
u = 0.473672 + 0.440581I
a = 0.80128 1.37475I
b = 0.17379 + 1.52146I
2.48507 0.60256I 0.45284 3.01495I
u = 0.473672 0.440581I
a = 0.80128 + 1.37475I
b = 0.17379 1.52146I
2.48507 + 0.60256I 0.45284 + 3.01495I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.342850 + 0.195956I
a = 0.162252 + 0.343427I
b = 0.00168 1.80697I
4.05099 + 4.57027I 0
u = 1.342850 0.195956I
a = 0.162252 0.343427I
b = 0.00168 + 1.80697I
4.05099 4.57027I 0
u = 0.208285 + 0.606015I
a = 0.37413 + 1.46044I
b = 0.050477 0.875409I
1.01708 + 3.22485I 3.29952 1.53483I
u = 0.208285 0.606015I
a = 0.37413 1.46044I
b = 0.050477 + 0.875409I
1.01708 3.22485I 3.29952 + 1.53483I
u = 0.107932 + 0.597520I
a = 0.058053 + 1.205490I
b = 0.304582 0.660951I
1.52734 + 2.01025I 4.15237 4.38381I
u = 0.107932 0.597520I
a = 0.058053 1.205490I
b = 0.304582 + 0.660951I
1.52734 2.01025I 4.15237 + 4.38381I
u = 0.574225 + 0.154605I
a = 0.895573 + 0.119935I
b = 0.453435 0.321110I
1.012190 + 0.224702I 10.07500 1.39244I
u = 0.574225 0.154605I
a = 0.895573 0.119935I
b = 0.453435 + 0.321110I
1.012190 0.224702I 10.07500 + 1.39244I
u = 1.44015
a = 0.864467
b = 1.81545
3.34202 0
u = 0.443389 + 0.313223I
a = 2.92248 0.01185I
b = 0.146346 + 0.009497I
1.45213 + 1.13937I 2.80069 + 2.68006I
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.443389 0.313223I
a = 2.92248 + 0.01185I
b = 0.146346 0.009497I
1.45213 1.13937I 2.80069 2.68006I
u = 1.46267 + 0.14512I
a = 0.479150 + 1.024860I
b = 1.54755 2.32447I
0.219652 0.514414I 0
u = 1.46267 0.14512I
a = 0.479150 1.024860I
b = 1.54755 + 2.32447I
0.219652 + 0.514414I 0
u = 0.478987 + 0.106396I
a = 0.928822 0.554161I
b = 0.976701 + 0.733060I
1.09010 2.70453I 5.06111 + 8.24534I
u = 0.478987 0.106396I
a = 0.928822 + 0.554161I
b = 0.976701 0.733060I
1.09010 + 2.70453I 5.06111 8.24534I
u = 1.53018 + 0.01645I
a = 0.378473 0.019636I
b = 1.78911 + 0.93630I
5.67752 2.80166I 0
u = 1.53018 0.01645I
a = 0.378473 + 0.019636I
b = 1.78911 0.93630I
5.67752 + 2.80166I 0
u = 0.217271 + 0.415338I
a = 1.48058 + 0.60711I
b = 0.0853380 + 0.1067120I
1.61290 + 0.93401I 1.58237 + 0.39943I
u = 0.217271 0.415338I
a = 1.48058 0.60711I
b = 0.0853380 0.1067120I
1.61290 0.93401I 1.58237 0.39943I
u = 1.52988 + 0.11797I
a = 0.623400 0.558838I
b = 2.34549 + 1.16028I
4.31442 + 3.77841I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.52988 0.11797I
a = 0.623400 + 0.558838I
b = 2.34549 1.16028I
4.31442 3.77841I 0
u = 1.53683 + 0.11028I
a = 0.320595 + 0.307458I
b = 1.52621 1.97759I
4.29005 1.28143I 0
u = 1.53683 0.11028I
a = 0.320595 0.307458I
b = 1.52621 + 1.97759I
4.29005 + 1.28143I 0
u = 1.54396 + 0.08769I
a = 1.58184 + 1.09398I
b = 3.48311 1.98660I
5.37828 + 0.28224I 0
u = 1.54396 0.08769I
a = 1.58184 1.09398I
b = 3.48311 + 1.98660I
5.37828 0.28224I 0
u = 1.54768 + 0.11773I
a = 1.40777 + 1.47039I
b = 3.29966 2.66855I
4.57897 5.71211I 0
u = 1.54768 0.11773I
a = 1.40777 1.47039I
b = 3.29966 + 2.66855I
4.57897 + 5.71211I 0
u = 1.55261 + 0.16241I
a = 0.864693 + 0.634138I
b = 3.02044 1.66426I
1.77533 8.56700I 0
u = 1.55261 0.16241I
a = 0.864693 0.634138I
b = 3.02044 + 1.66426I
1.77533 + 8.56700I 0
u = 1.56486 + 0.06219I
a = 0.713620 0.067510I
b = 2.18755 + 0.52995I
8.30846 1.13053I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.56486 0.06219I
a = 0.713620 + 0.067510I
b = 2.18755 0.52995I
8.30846 + 1.13053I 0
u = 1.56721 + 0.12575I
a = 0.669514 + 0.170271I
b = 2.06471 1.12705I
6.60902 + 6.00545I 0
u = 1.56721 0.12575I
a = 0.669514 0.170271I
b = 2.06471 + 1.12705I
6.60902 6.00545I 0
u = 1.58541 + 0.18980I
a = 1.50518 + 0.63558I
b = 3.93186 0.97204I
7.2874 15.1719I 0
u = 1.58541 0.18980I
a = 1.50518 0.63558I
b = 3.93186 + 0.97204I
7.2874 + 15.1719I 0
u = 1.58960 + 0.17605I
a = 1.40524 + 0.42225I
b = 3.59162 0.75532I
8.54478 + 9.31535I 0
u = 1.58960 0.17605I
a = 1.40524 0.42225I
b = 3.59162 + 0.75532I
8.54478 9.31535I 0
u = 1.59206 + 0.15544I
a = 1.29051 0.83360I
b = 3.33436 + 1.24733I
10.01660 + 9.56671I 0
u = 1.59206 0.15544I
a = 1.29051 + 0.83360I
b = 3.33436 1.24733I
10.01660 9.56671I 0
u = 1.59672 + 0.13586I
a = 1.29653 0.58956I
b = 3.24169 + 0.91373I
11.02700 3.73205I 0
11
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.59672 0.13586I
a = 1.29653 + 0.58956I
b = 3.24169 0.91373I
11.02700 + 3.73205I 0
u = 1.63713 + 0.01501I
a = 0.391869 0.910777I
b = 0.94477 + 1.07763I
13.79420 + 0.08438I 0
u = 1.63713 0.01501I
a = 0.391869 + 0.910777I
b = 0.94477 1.07763I
13.79420 0.08438I 0
u = 1.63715 + 0.03760I
a = 0.095026 0.954894I
b = 0.326676 + 1.124460I
13.6181 + 5.9211I 0
u = 1.63715 0.03760I
a = 0.095026 + 0.954894I
b = 0.326676 1.124460I
13.6181 5.9211I 0
12
II. I
u
2
= hb
2
2bu b + u + 3, 2a + u, u
2
2i
(i) Arc colorings
a
5
=
0
u
a
9
=
1
0
a
1
=
1
2
u
b
a
10
=
1
2
a
11
=
1
2
bu + 2
bu + b u 5
a
4
=
u
u
a
8
=
1
2
a
3
=
0
u
a
2
=
1
2
u
b u
a
7
=
1
2
a
12
=
1
2
bu + b u + 1
bu b + u 3
a
6
=
1
2
u
b
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4b 4u
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
(u 1)
4
c
2
(u + 1)
4
c
3
, c
4
, c
8
c
9
(u
2
2)
2
c
6
, c
10
(u
2
u + 1)
2
c
7
u
4
c
11
, c
12
(u
2
+ u + 1)
2
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
(y 1)
4
c
3
, c
4
, c
8
c
9
(y 2)
4
c
6
, c
10
, c
11
c
12
(y
2
+ y + 1)
2
c
7
y
4
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.41421
a = 0.707107
b = 1.91421 + 0.86603I
3.28987 2.02988I 2.00000 + 3.46410I
u = 1.41421
a = 0.707107
b = 1.91421 0.86603I
3.28987 + 2.02988I 2.00000 3.46410I
u = 1.41421
a = 0.707107
b = 0.914214 + 0.866025I
3.28987 2.02988I 2.00000 + 3.46410I
u = 1.41421
a = 0.707107
b = 0.914214 0.866025I
3.28987 + 2.02988I 2.00000 3.46410I
16
III. I
v
1
= ha, b v 1, v
2
+ v + 1i
(i) Arc colorings
a
5
=
v
0
a
9
=
1
0
a
1
=
0
v + 1
a
10
=
1
0
a
11
=
1
v
a
4
=
v
0
a
8
=
1
0
a
3
=
v
0
a
2
=
v
v + 1
a
7
=
1
0
a
12
=
v + 1
v
a
6
=
0
v 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4v + 2
17
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
2
c
3
, c
4
, c
7
c
8
, c
9
u
2
c
5
(u + 1)
2
c
6
, c
12
u
2
+ u + 1
c
10
, c
11
u
2
u + 1
18
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
(y 1)
2
c
3
, c
4
, c
7
c
8
, c
9
y
2
c
6
, c
10
, c
11
c
12
y
2
+ y + 1
19
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 0.500000 + 0.866025I
a = 0
b = 0.500000 + 0.866025I
1.64493 2.02988I 0. + 3.46410I
v = 0.500000 0.866025I
a = 0
b = 0.500000 0.866025I
1.64493 + 2.02988I 0. 3.46410I
20
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
6
)(u
75
+ 39u
74
+ ··· + 417u + 49)
c
2
((u 1)
2
)(u + 1)
4
(u
75
+ 3u
74
+ ··· 9u 7)
c
3
, c
4
, c
8
c
9
u
2
(u
2
2)
2
(u
75
+ u
74
+ ··· 12u 4)
c
5
((u 1)
4
)(u + 1)
2
(u
75
+ 3u
74
+ ··· 9u 7)
c
6
((u
2
u + 1)
2
)(u
2
+ u + 1)(u
75
2u
74
+ ··· + 6u + 1)
c
7
u
6
(u
75
+ 15u
74
+ ··· + 11264u + 1792)
c
10
((u
2
u + 1)
3
)(u
75
+ 26u
74
+ ··· + 40u 1)
c
11
(u
2
u + 1)(u
2
+ u + 1)
2
(u
75
2u
74
+ ··· + 6u + 1)
c
12
((u
2
+ u + 1)
3
)(u
75
+ 26u
74
+ ··· + 40u 1)
21
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
6
)(y
75
+ y
74
+ ··· 65623y 2401)
c
2
, c
5
((y 1)
6
)(y
75
39y
74
+ ··· + 417y 49)
c
3
, c
4
, c
8
c
9
y
2
(y 2)
4
(y
75
85y
74
+ ··· + 272y 16)
c
6
, c
11
((y
2
+ y + 1)
3
)(y
75
+ 26y
74
+ ··· + 40y 1)
c
7
y
6
(y
75
+ 19y
74
+ ··· + 1.28483 × 10
8
y 3211264)
c
10
, c
12
((y
2
+ y + 1)
3
)(y
75
+ 50y
74
+ ··· + 1936y 1)
22