10
23
(K10a
57
)
A knot diagram
1
Linearized knot diagam
7 6 9 10 1 2 4 3 8 5
Solving Sequence
1,7
2 6 3 5 10 4 8 9
c
1
c
6
c
2
c
5
c
10
c
4
c
7
c
9
c
3
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= hu
29
u
28
+ ··· + u 1i
* 1 irreducible components of dim
C
= 0, with total 29 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
29
u
28
+ · · · + u 1i
(i) Arc colorings
a
1
=
1
0
a
7
=
0
u
a
2
=
1
u
2
a
6
=
u
u
3
+ u
a
3
=
u
2
+ 1
u
4
2u
2
a
5
=
u
3
2u
u
3
+ u
a
10
=
u
6
3u
4
2u
2
+ 1
u
6
+ 2u
4
+ u
2
a
4
=
u
9
+ 4u
7
+ 5u
5
3u
u
9
3u
7
3u
5
+ u
a
8
=
u
19
+ 8u
17
+ 26u
15
+ 40u
13
+ 19u
11
24u
9
30u
7
+ 9u
3
u
19
7u
17
20u
15
27u
13
11u
11
+ 13u
9
+ 14u
7
3u
3
+ u
a
9
=
u
25
10u
23
+ ··· + 10u
3
u
u
27
+ 11u
25
+ ··· u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 4u
28
4u
27
+ 44u
26
40u
25
+ 208u
24
172u
23
+ 528u
22
396u
21
+ 692u
20
468u
19
+ 184u
18
112u
17
756u
16
+ 404u
15
952u
14
+ 460u
13
96u
12
+ 92u
11
+
512u
10
116u
9
+ 224u
8
80u
7
92u
6
40u
5
40u
4
4u
3
+ 12u
2
+ 8u + 6
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
6
u
29
u
28
+ ··· + u 1
c
3
, c
8
u
29
u
28
+ ··· + u 1
c
4
, c
5
, c
10
u
29
+ u
28
+ ··· 7u 1
c
7
u
29
3u
28
+ ··· u + 1
c
9
u
29
+ 13u
28
+ ··· + 3u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
y
29
+ 23y
28
+ ··· + 3y 1
c
3
, c
8
y
29
13y
28
+ ··· + 3y 1
c
4
, c
5
, c
10
y
29
29y
28
+ ··· + 19y 1
c
7
y
29
y
28
+ ··· + 31y 1
c
9
y
29
+ 7y
28
+ ··· 17y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.104948 + 1.063430I
1.50634 + 2.08825I 4.67041 4.01921I
u = 0.104948 1.063430I
1.50634 2.08825I 4.67041 + 4.01921I
u = 0.867318 + 0.055730I
6.06905 + 6.86231I 7.66791 5.15654I
u = 0.867318 0.055730I
6.06905 6.86231I 7.66791 + 5.15654I
u = 0.865828 + 0.030403I
7.84107 1.55857I 10.33093 + 0.38024I
u = 0.865828 0.030403I
7.84107 + 1.55857I 10.33093 0.38024I
u = 0.802035
2.34920 4.54160
u = 0.144820 + 1.275680I
3.23997 + 2.39104I 2.27394 3.37022I
u = 0.144820 1.275680I
3.23997 2.39104I 2.27394 + 3.37022I
u = 0.413631 + 1.222060I
2.47326 2.27350I 4.56508 + 1.80235I
u = 0.413631 1.222060I
2.47326 + 2.27350I 4.56508 1.80235I
u = 0.408190 + 1.247470I
4.07665 3.00599I 6.90218 + 3.08222I
u = 0.408190 1.247470I
4.07665 + 3.00599I 6.90218 3.08222I
u = 0.355449 + 1.278410I
1.63034 + 4.16530I 0.22706 3.16142I
u = 0.355449 1.278410I
1.63034 4.16530I 0.22706 + 3.16142I
u = 0.076147 + 1.325550I
6.70958 + 0.47843I 4.05109 0.53373I
u = 0.076147 1.325550I
6.70958 0.47843I 4.05109 + 0.53373I
u = 0.164926 + 1.331090I
5.61619 6.65351I 1.43843 + 7.12693I
u = 0.164926 1.331090I
5.61619 + 6.65351I 1.43843 7.12693I
u = 0.398344 + 1.297060I
3.70379 6.09123I 6.35632 + 3.37420I
u = 0.398344 1.297060I
3.70379 + 6.09123I 6.35632 3.37420I
u = 0.395776 + 1.314560I
1.78699 + 11.39320I 3.51396 7.74456I
u = 0.395776 1.314560I
1.78699 11.39320I 3.51396 + 7.74456I
u = 0.504557 + 0.291210I
0.58407 4.33232I 4.72516 + 7.80862I
u = 0.504557 0.291210I
0.58407 + 4.33232I 4.72516 7.80862I
u = 0.232980 + 0.458467I
1.44954 + 1.50061I 0.980964 0.451451I
u = 0.232980 0.458467I
1.44954 1.50061I 0.980964 + 0.451451I
u = 0.468013 + 0.123523I
1.012830 + 0.278366I 10.00481 1.83311I
u = 0.468013 0.123523I
1.012830 0.278366I 10.00481 + 1.83311I
5
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
6
u
29
u
28
+ ··· + u 1
c
3
, c
8
u
29
u
28
+ ··· + u 1
c
4
, c
5
, c
10
u
29
+ u
28
+ ··· 7u 1
c
7
u
29
3u
28
+ ··· u + 1
c
9
u
29
+ 13u
28
+ ··· + 3u + 1
6
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
y
29
+ 23y
28
+ ··· + 3y 1
c
3
, c
8
y
29
13y
28
+ ··· + 3y 1
c
4
, c
5
, c
10
y
29
29y
28
+ ··· + 19y 1
c
7
y
29
y
28
+ ··· + 31y 1
c
9
y
29
+ 7y
28
+ ··· 17y 1
7