10
24
(K10a
71
)
A knot diagram
1
Linearized knot diagam
7 5 9 3 2 10 1 4 6 8
Solving Sequence
2,7
1 8 10 6 5 3 4 9
c
1
c
7
c
10
c
6
c
5
c
2
c
4
c
9
c
3
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= hu
27
+ u
26
+ ··· + 2u 1i
* 1 irreducible components of dim
C
= 0, with total 27 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
27
+ u
26
+ · · · + 2u 1i
(i) Arc colorings
a
2
=
1
0
a
7
=
0
u
a
1
=
1
u
2
a
8
=
u
u
3
+ u
a
10
=
u
2
+ 1
u
4
2u
2
a
6
=
u
5
+ 2u
3
+ u
u
7
3u
5
2u
3
+ u
a
5
=
u
7
2u
5
+ 2u
u
7
3u
5
2u
3
+ u
a
3
=
u
14
+ 5u
12
+ 8u
10
+ u
8
8u
6
4u
4
+ 2u
2
+ 1
u
14
+ 6u
12
+ 13u
10
+ 10u
8
2u
6
4u
4
+ u
2
a
4
=
u
21
8u
19
25u
17
34u
15
6u
13
+ 34u
11
+ 27u
9
8u
7
13u
5
+ 3u
u
21
9u
19
+ ··· u
3
+ u
a
9
=
u
8
3u
6
3u
4
+ 1
u
10
+ 4u
8
+ 5u
6
3u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
25
4u
24
44u
23
40u
22
208u
21
168u
20
536u
19
372u
18
772u
17
432u
16
508u
15
184u
14
+ 100u
13
+ 92u
12
+ 340u
11
+ 72u
10
+
68u
9
48u
8
144u
7
28u
6
76u
5
+ 12u
4
+ 16u
3
+ 20u 10
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
, c
10
u
27
u
26
+ ··· + 2u + 1
c
2
, c
4
, c
5
u
27
+ 7u
26
+ ··· 2u 1
c
3
, c
8
u
27
+ u
26
+ ··· + u
2
+ 1
c
6
, c
9
u
27
+ u
26
+ ··· + 4u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
, c
10
y
27
+ 23y
26
+ ··· 2y 1
c
2
, c
4
, c
5
y
27
+ 27y
26
+ ··· + 14y 1
c
3
, c
8
y
27
+ 7y
26
+ ··· 2y 1
c
6
, c
9
y
27
13y
26
+ ··· 2y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.278071 + 0.956556I
4.70022 3.05015I 2.91169 + 1.99178I
u = 0.278071 0.956556I
4.70022 + 3.05015I 2.91169 1.99178I
u = 0.260338 + 0.833668I
4.87925 2.83072I 2.20196 + 3.74350I
u = 0.260338 0.833668I
4.87925 + 2.83072I 2.20196 3.74350I
u = 0.768863 + 0.186622I
2.29246 + 7.02686I 6.18454 6.08794I
u = 0.768863 0.186622I
2.29246 7.02686I 6.18454 + 6.08794I
u = 0.738973 + 0.201195I
2.75404 0.96140I 5.27084 + 1.18503I
u = 0.738973 0.201195I
2.75404 + 0.96140I 5.27084 1.18503I
u = 0.291604 + 1.207020I
0.823094 + 0.986974I 8.82659 + 0.25321I
u = 0.291604 1.207020I
0.823094 0.986974I 8.82659 0.25321I
u = 0.750412 + 0.064416I
4.29886 + 2.79673I 12.25981 4.61920I
u = 0.750412 0.064416I
4.29886 2.79673I 12.25981 + 4.61920I
u = 0.082485 + 1.285040I
4.34194 2.01066I 0.08108 + 3.90758I
u = 0.082485 1.285040I
4.34194 + 2.01066I 0.08108 3.90758I
u = 0.257867 + 1.292320I
2.54425 3.27708I 0.72206 + 2.87566I
u = 0.257867 1.292320I
2.54425 + 3.27708I 0.72206 2.87566I
u = 0.317436 + 1.304880I
0.01754 + 6.65682I 6.80212 7.22011I
u = 0.317436 1.304880I
0.01754 6.65682I 6.80212 + 7.22011I
u = 0.649647
1.51171 6.25830
u = 0.307012 + 1.374630I
7.73615 4.75862I 0.67410 + 2.41055I
u = 0.307012 1.374630I
7.73615 + 4.75862I 0.67410 2.41055I
u = 0.322115 + 1.372980I
7.22305 + 10.97750I 1.68833 7.27184I
u = 0.322115 1.372980I
7.22305 10.97750I 1.68833 + 7.27184I
u = 0.01000 + 1.42794I
11.72200 3.15301I 1.82291 + 2.60032I
u = 0.01000 1.42794I
11.72200 + 3.15301I 1.82291 2.60032I
u = 0.247000 + 0.300914I
0.352229 0.953640I 6.23281 + 7.10310I
u = 0.247000 0.300914I
0.352229 + 0.953640I 6.23281 7.10310I
5
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
7
, c
10
u
27
u
26
+ ··· + 2u + 1
c
2
, c
4
, c
5
u
27
+ 7u
26
+ ··· 2u 1
c
3
, c
8
u
27
+ u
26
+ ··· + u
2
+ 1
c
6
, c
9
u
27
+ u
26
+ ··· + 4u + 1
6
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
7
, c
10
y
27
+ 23y
26
+ ··· 2y 1
c
2
, c
4
, c
5
y
27
+ 27y
26
+ ··· + 14y 1
c
3
, c
8
y
27
+ 7y
26
+ ··· 2y 1
c
6
, c
9
y
27
13y
26
+ ··· 2y 1
7