12a
0291
(K12a
0291
)
A knot diagram
1
Linearized knot diagam
3 6 8 10 2 5 11 1 12 7 4 9
Solving Sequence
1,8 4,9
3 2 12 10 5 11 7 6
c
8
c
3
c
1
c
12
c
9
c
4
c
11
c
7
c
6
c
2
, c
5
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−4.04111 × 10
126
u
84
1.47004 × 10
127
u
83
+ ··· + 7.92770 × 10
126
b + 7.78808 × 10
126
,
6.64112 × 10
126
u
84
2.58904 × 10
127
u
83
+ ··· + 7.92770 × 10
126
a 2.36197 × 10
127
,
u
85
+ 4u
84
+ ··· + 14u + 2i
I
u
2
= h−au + b, 9a
3
6a
2
u + 3a
2
6a + 2u 1, u
2
u + 1i
I
u
3
= hb + u + 1, 2a 3u 2, u
2
+ 2i
I
v
1
= ha, b + 1, v + 1i
* 4 irreducible components of dim
C
= 0, with total 94 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−4.04 × 10
126
u
84
1.47 × 10
127
u
83
+ · · · + 7.93 × 10
126
b + 7.79 ×
10
126
, 6.64 × 10
126
u
84
2.59 × 10
127
u
83
+ · · · + 7.93 × 10
126
a 2.36 ×
10
127
, u
85
+ 4u
84
+ · · · + 14u + 2i
(i) Arc colorings
a
1
=
0
u
a
8
=
1
0
a
4
=
0.837711u
84
+ 3.26582u
83
+ ··· + 23.0946u + 2.97939
0.509746u
84
+ 1.85431u
83
+ ··· + 2.63027u 0.982389
a
9
=
1
u
2
a
3
=
1.34746u
84
+ 5.12014u
83
+ ··· + 25.7249u + 1.99700
0.509746u
84
+ 1.85431u
83
+ ··· + 2.63027u 0.982389
a
2
=
1.26472u
84
6.06172u
83
+ ··· 91.5000u 16.8602
0.598452u
84
+ 2.02176u
83
+ ··· + 4.76229u 0.278731
a
12
=
u
u
3
+ u
a
10
=
u
2
+ 1
u
4
+ 2u
2
a
5
=
1.72649u
84
+ 6.50029u
83
+ ··· + 34.3325u + 3.23940
0.519117u
84
+ 2.00224u
83
+ ··· + 9.39854u + 0.520508
a
11
=
2.50474u
84
10.2416u
83
+ ··· 93.6888u 15.3979
0.592317u
84
+ 2.10401u
83
+ ··· + 9.22146u + 0.356710
a
7
=
2.36646u
84
9.65905u
83
+ ··· 94.7830u 15.3092
0.509534u
84
+ 1.79876u
83
+ ··· + 6.34356u + 0.475093
a
6
=
0.0492125u
84
+ 0.616005u
83
+ ··· + 18.7360u + 3.81121
0.258472u
84
0.807102u
83
+ ··· + 0.539727u + 0.813419
(ii) Obstruction class = 1
(iii) Cusp Shapes = 1.70495u
84
5.18172u
83
+ ··· + 36.7845u + 15.0874
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
u
85
+ 24u
84
+ ··· + 97u + 81
c
2
, c
5
u
85
+ 6u
84
+ ··· + 23u + 9
c
3
27(27u
85
153u
84
+ ··· 2.29371 × 10
8
u + 3.37805 × 10
7
)
c
4
27(27u
85
+ 288u
84
+ ··· 8003245u + 2090863)
c
7
, c
10
u
85
5u
84
+ ··· + 18u + 3
c
8
, c
9
, c
12
u
85
4u
84
+ ··· + 14u 2
c
11
u
85
4u
84
+ ··· 33696u + 5184
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
85
+ 80y
84
+ ··· + 824593y 6561
c
2
, c
5
y
85
24y
84
+ ··· + 97y 81
c
3
729(729y
85
+ 35559y
84
+ ··· 6.28776 × 10
15
y 1.14112 × 10
15
)
c
4
729
· (729y
85
51192y
84
+ ··· + 103418130379289y 4371708084769)
c
7
, c
10
y
85
59y
84
+ ··· + 966y 9
c
8
, c
9
, c
12
y
85
+ 88y
84
+ ··· 52y 4
c
11
y
85
38y
84
+ ··· + 338162688y 26873856
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.802781 + 0.666760I
a = 0.444154 + 0.389043I
b = 0.54776 1.33558I
9.35665 + 6.36583I 0
u = 0.802781 0.666760I
a = 0.444154 0.389043I
b = 0.54776 + 1.33558I
9.35665 6.36583I 0
u = 0.840661 + 0.625642I
a = 0.546357 0.360547I
b = 0.64122 + 1.40506I
8.7128 + 12.6729I 0
u = 0.840661 0.625642I
a = 0.546357 + 0.360547I
b = 0.64122 1.40506I
8.7128 12.6729I 0
u = 0.933727 + 0.500289I
a = 0.710871 + 0.140901I
b = 0.067748 + 1.068420I
8.75934 0.64306I 0
u = 0.933727 0.500289I
a = 0.710871 0.140901I
b = 0.067748 1.068420I
8.75934 + 0.64306I 0
u = 0.099564 + 1.061390I
a = 0.055284 0.183938I
b = 0.804734 0.275552I
1.46155 0.12863I 0
u = 0.099564 1.061390I
a = 0.055284 + 0.183938I
b = 0.804734 + 0.275552I
1.46155 + 0.12863I 0
u = 0.922718 + 0.564249I
a = 0.711488 0.159783I
b = 0.149669 1.177890I
8.44674 6.85650I 0
u = 0.922718 0.564249I
a = 0.711488 + 0.159783I
b = 0.149669 + 1.177890I
8.44674 + 6.85650I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.593150 + 0.919610I
a = 0.1315520 0.0150511I
b = 0.268708 0.398741I
0.92845 1.82818I 0
u = 0.593150 0.919610I
a = 0.1315520 + 0.0150511I
b = 0.268708 + 0.398741I
0.92845 + 1.82818I 0
u = 0.951786 + 0.650510I
a = 0.486994 0.119384I
b = 0.391324 + 1.066140I
3.74898 6.20791I 0
u = 0.951786 0.650510I
a = 0.486994 + 0.119384I
b = 0.391324 1.066140I
3.74898 + 6.20791I 0
u = 0.925364 + 0.717550I
a = 0.440303 + 0.082121I
b = 0.238296 1.072720I
3.93970 0.17528I 0
u = 0.925364 0.717550I
a = 0.440303 0.082121I
b = 0.238296 + 1.072720I
3.93970 + 0.17528I 0
u = 0.727828 + 0.390455I
a = 0.449726 0.488595I
b = 0.525964 + 0.518969I
2.30865 2.94104I 0
u = 0.727828 0.390455I
a = 0.449726 + 0.488595I
b = 0.525964 0.518969I
2.30865 + 2.94104I 0
u = 0.325597 + 1.142700I
a = 0.0448468 0.0603608I
b = 0.789387 + 0.068143I
1.61955 4.56441I 0
u = 0.325597 1.142700I
a = 0.0448468 + 0.0603608I
b = 0.789387 0.068143I
1.61955 + 4.56441I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.567914 + 0.571899I
a = 0.604728 0.178179I
b = 0.644834 0.904739I
1.38177 3.51715I 0
u = 0.567914 0.571899I
a = 0.604728 + 0.178179I
b = 0.644834 + 0.904739I
1.38177 + 3.51715I 0
u = 0.641156 + 0.471692I
a = 0.731557 0.940849I
b = 0.817818 + 0.973867I
1.07426 + 7.71240I 0
u = 0.641156 0.471692I
a = 0.731557 + 0.940849I
b = 0.817818 0.973867I
1.07426 7.71240I 0
u = 0.460489 + 0.587516I
a = 0.051839 + 1.283270I
b = 0.590387 0.821616I
4.12766 + 3.84400I 3.48726 5.71525I
u = 0.460489 0.587516I
a = 0.051839 1.283270I
b = 0.590387 + 0.821616I
4.12766 3.84400I 3.48726 + 5.71525I
u = 0.167924 + 0.707939I
a = 2.22545 + 0.77882I
b = 0.356883 0.967640I
7.83381 + 0.86043I 5.30165 + 0.I
u = 0.167924 0.707939I
a = 2.22545 0.77882I
b = 0.356883 + 0.967640I
7.83381 0.86043I 5.30165 + 0.I
u = 0.289362 + 0.616253I
a = 2.51494 0.45923I
b = 0.143489 + 0.984157I
7.12241 5.37900I 3.62062 + 6.29663I
u = 0.289362 0.616253I
a = 2.51494 + 0.45923I
b = 0.143489 0.984157I
7.12241 + 5.37900I 3.62062 6.29663I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.585513 + 0.213693I
a = 0.594955 + 0.071624I
b = 0.580910 + 0.428079I
3.00184 0.43149I 1.31859 2.45780I
u = 0.585513 0.213693I
a = 0.594955 0.071624I
b = 0.580910 0.428079I
3.00184 + 0.43149I 1.31859 + 2.45780I
u = 0.180672 + 1.380910I
a = 1.23127 0.96960I
b = 0.679911 + 0.815725I
7.94632 + 2.41671I 0
u = 0.180672 1.380910I
a = 1.23127 + 0.96960I
b = 0.679911 0.815725I
7.94632 2.41671I 0
u = 0.050758 + 1.403220I
a = 0.14372 1.51124I
b = 0.444961 + 0.783429I
2.89071 0.02350I 0
u = 0.050758 1.403220I
a = 0.14372 + 1.51124I
b = 0.444961 0.783429I
2.89071 + 0.02350I 0
u = 0.027731 + 1.406400I
a = 3.96077 + 1.85576I
b = 4.01105 2.17001I
5.66382 0.10661I 0
u = 0.027731 1.406400I
a = 3.96077 1.85576I
b = 4.01105 + 2.17001I
5.66382 + 0.10661I 0
u = 0.332326 + 0.422048I
a = 0.224263 + 0.635046I
b = 0.268723 0.452263I
0.065957 1.057420I 1.21607 + 6.29792I
u = 0.332326 0.422048I
a = 0.224263 0.635046I
b = 0.268723 + 0.452263I
0.065957 + 1.057420I 1.21607 6.29792I
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.514945 + 0.052028I
a = 0.63587 1.41127I
b = 0.326392 + 0.017339I
1.57079 + 1.46950I 9.77061 4.07897I
u = 0.514945 0.052028I
a = 0.63587 + 1.41127I
b = 0.326392 0.017339I
1.57079 1.46950I 9.77061 + 4.07897I
u = 0.21356 + 1.47274I
a = 0.10247 1.46449I
b = 0.452591 + 0.938205I
3.73750 6.24800I 0
u = 0.21356 1.47274I
a = 0.10247 + 1.46449I
b = 0.452591 0.938205I
3.73750 + 6.24800I 0
u = 0.06407 + 1.49452I
a = 0.51861 2.01899I
b = 0.171203 + 0.869357I
6.16680 + 1.75465I 0
u = 0.06407 1.49452I
a = 0.51861 + 2.01899I
b = 0.171203 0.869357I
6.16680 1.75465I 0
u = 0.05194 + 1.49750I
a = 0.75573 1.32650I
b = 1.77024 + 1.16248I
9.30893 + 4.57642I 0
u = 0.05194 1.49750I
a = 0.75573 + 1.32650I
b = 1.77024 1.16248I
9.30893 4.57642I 0
u = 0.01980 + 1.50512I
a = 0.87950 + 1.48472I
b = 1.77677 1.49662I
9.72935 1.45679I 0
u = 0.01980 1.50512I
a = 0.87950 1.48472I
b = 1.77677 + 1.49662I
9.72935 + 1.45679I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.10823 + 1.51105I
a = 0.04805 + 1.53309I
b = 0.088616 1.270120I
6.46358 2.67802I 0
u = 0.10823 1.51105I
a = 0.04805 1.53309I
b = 0.088616 + 1.270120I
6.46358 + 2.67802I 0
u = 0.19892 + 1.50982I
a = 0.04052 1.96137I
b = 0.74982 + 1.25661I
7.58189 + 10.73300I 0
u = 0.19892 1.50982I
a = 0.04052 + 1.96137I
b = 0.74982 1.25661I
7.58189 10.73300I 0
u = 0.09406 + 1.52146I
a = 0.60512 + 1.61508I
b = 0.19813 1.69091I
8.39441 1.40303I 0
u = 0.09406 1.52146I
a = 0.60512 1.61508I
b = 0.19813 + 1.69091I
8.39441 + 1.40303I 0
u = 0.176623 + 0.430115I
a = 1.88458 0.21008I
b = 0.469587 1.100450I
3.24208 1.99205I 1.86195 + 5.62347I
u = 0.176623 0.430115I
a = 1.88458 + 0.21008I
b = 0.469587 + 1.100450I
3.24208 + 1.99205I 1.86195 5.62347I
u = 0.246167 + 0.375896I
a = 2.13263 + 0.10858I
b = 0.714174 + 0.978375I
3.01363 + 3.62679I 0.237626 0.197969I
u = 0.246167 0.375896I
a = 2.13263 0.10858I
b = 0.714174 0.978375I
3.01363 3.62679I 0.237626 + 0.197969I
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.13362 + 1.54561I
a = 0.19237 + 1.85508I
b = 0.374741 1.266880I
11.23470 + 5.99704I 0
u = 0.13362 1.54561I
a = 0.19237 1.85508I
b = 0.374741 + 1.266880I
11.23470 5.99704I 0
u = 0.07557 + 1.55121I
a = 0.653295 1.130100I
b = 0.576031 + 0.900387I
14.3920 6.6683I 0
u = 0.07557 1.55121I
a = 0.653295 + 1.130100I
b = 0.576031 0.900387I
14.3920 + 6.6683I 0
u = 0.440029 + 0.047676I
a = 0.040169 0.742148I
b = 0.00599 2.44474I
5.42251 + 2.96044I 11.24832 0.49298I
u = 0.440029 0.047676I
a = 0.040169 + 0.742148I
b = 0.00599 + 2.44474I
5.42251 2.96044I 11.24832 + 0.49298I
u = 0.03178 + 1.56804I
a = 0.58241 + 1.33803I
b = 0.417899 1.034010I
15.4735 + 0.2256I 0
u = 0.03178 1.56804I
a = 0.58241 1.33803I
b = 0.417899 + 1.034010I
15.4735 0.2256I 0
u = 0.257488 + 0.337643I
a = 0.37428 3.54840I
b = 0.584493 + 0.525668I
0.025237 + 0.681729I 0.12938 10.39624I
u = 0.257488 0.337643I
a = 0.37428 + 3.54840I
b = 0.584493 0.525668I
0.025237 0.681729I 0.12938 + 10.39624I
11
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.28292 + 1.58422I
a = 0.13616 1.84338I
b = 0.95678 + 1.78318I
15.9618 + 16.8256I 0
u = 0.28292 1.58422I
a = 0.13616 + 1.84338I
b = 0.95678 1.78318I
15.9618 16.8256I 0
u = 0.25995 + 1.59435I
a = 0.10124 + 1.81756I
b = 0.82984 1.77590I
16.8148 + 10.3036I 0
u = 0.25995 1.59435I
a = 0.10124 1.81756I
b = 0.82984 + 1.77590I
16.8148 10.3036I 0
u = 0.34489 + 1.59776I
a = 0.440689 0.952425I
b = 0.512257 + 1.080120I
15.6088 + 4.1683I 0
u = 0.34489 1.59776I
a = 0.440689 + 0.952425I
b = 0.512257 1.080120I
15.6088 4.1683I 0
u = 0.29557 + 1.61174I
a = 0.065113 1.385510I
b = 0.93022 + 1.37397I
11.2264 10.7656I 0
u = 0.29557 1.61174I
a = 0.065113 + 1.385510I
b = 0.93022 1.37397I
11.2264 + 10.7656I 0
u = 0.26193 + 1.62559I
a = 0.048549 + 1.391250I
b = 0.81923 1.46077I
11.77100 4.49005I 0
u = 0.26193 1.62559I
a = 0.048549 1.391250I
b = 0.81923 + 1.46077I
11.77100 + 4.49005I 0
12
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.31266 + 1.62469I
a = 0.420595 + 1.013950I
b = 0.488380 1.232340I
15.6769 2.1737I 0
u = 0.31266 1.62469I
a = 0.420595 1.013950I
b = 0.488380 + 1.232340I
15.6769 + 2.1737I 0
u = 0.047792 + 0.283678I
a = 0.434605 0.380197I
b = 0.75550 1.74214I
0.336343 + 0.330613I 14.7201 + 7.4977I
u = 0.047792 0.283678I
a = 0.434605 + 0.380197I
b = 0.75550 + 1.74214I
0.336343 0.330613I 14.7201 7.4977I
u = 0.204107
a = 2.83102
b = 0.630306
1.37360 7.31630
13
II. I
u
2
= h−au + b, 9a
3
6a
2
u + 3a
2
6a + 2u 1, u
2
u + 1i
(i) Arc colorings
a
1
=
0
u
a
8
=
1
0
a
4
=
a
au
a
9
=
1
u 1
a
3
=
au + a
au
a
2
=
3a
2
u + 3a
2
a
2
u + 2a
2
+ u
a
12
=
u
u 1
a
10
=
u
u 2
a
5
=
au + a
2au 2a
a
11
=
u
u 1
a
7
=
0
u
a
6
=
3a
2
u + 3a
2
2a
2
u + 2a
2
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 17a
2
u + 30a
2
11au + a + 13u 19
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
3
u
2
+ 2u 1)
2
c
2
(u
3
+ u
2
1)
2
c
3
27(27u
6
27u
5
+ 27u
4
18u
3
+ 15u
2
6u + 1)
c
4
27(27u
6
27u
4
+ 6u
2
+ 1)
c
5
(u
3
u
2
+ 1)
2
c
6
(u
3
+ u
2
+ 2u + 1)
2
c
7
, c
12
(u
2
+ u + 1)
3
c
8
, c
9
, c
10
(u
2
u + 1)
3
c
11
u
6
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
(y
3
+ 3y
2
+ 2y 1)
2
c
2
, c
5
(y
3
y
2
+ 2y 1)
2
c
3
729(729y
6
+ 729y
5
+ 567y
4
+ 216y
3
+ 63y
2
6y + 1)
c
4
729(27y
3
27y
2
+ 6y + 1)
2
c
7
, c
8
, c
9
c
10
, c
12
(y
2
+ y + 1)
3
c
11
y
6
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 0.754678 + 0.124176I
b = 0.269799 + 0.715659I
3.02413 + 0.79824I 0.040167 0.618060I
u = 0.500000 + 0.866025I
a = 0.754678 + 0.124176I
b = 0.484879 0.591482I
3.02413 4.85801I 1.23319 + 5.70115I
u = 0.500000 + 0.866025I
a = 0.328997I
b = 0.284920 + 0.164499I
1.11345 2.02988I 11.6930 + 11.3714I
u = 0.500000 0.866025I
a = 0.754678 0.124176I
b = 0.269799 0.715659I
3.02413 0.79824I 0.040167 + 0.618060I
u = 0.500000 0.866025I
a = 0.754678 0.124176I
b = 0.484879 + 0.591482I
3.02413 + 4.85801I 1.23319 5.70115I
u = 0.500000 0.866025I
a = 0.328997I
b = 0.284920 0.164499I
1.11345 + 2.02988I 11.6930 11.3714I
17
III. I
u
3
= hb + u + 1, 2a 3u 2, u
2
+ 2i
(i) Arc colorings
a
1
=
0
u
a
8
=
1
0
a
4
=
3
2
u + 1
u 1
a
9
=
1
2
a
3
=
1
2
u
u 1
a
2
=
1
2
u
1
a
12
=
u
u
a
10
=
1
0
a
5
=
1
2
u
u 1
a
11
=
1
2
u 1
1
a
7
=
1
2
u
1
a
6
=
0
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
18
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
7
(u 1)
2
c
3
u
2
2u + 3
c
4
u
2
+ 2u + 3
c
5
, c
6
, c
10
c
11
(u + 1)
2
c
8
, c
9
, c
12
u
2
+ 2
19
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
6
, c
7
, c
10
c
11
(y 1)
2
c
3
, c
4
y
2
+ 2y + 9
c
8
, c
9
, c
12
(y + 2)
2
20
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.414210I
a = 1.00000 + 2.12132I
b = 1.00000 1.41421I
4.93480 0
u = 1.414210I
a = 1.00000 2.12132I
b = 1.00000 + 1.41421I
4.93480 0
21
IV. I
v
1
= ha, b + 1, v + 1i
(i) Arc colorings
a
1
=
1
0
a
8
=
1
0
a
4
=
0
1
a
9
=
1
0
a
3
=
1
1
a
2
=
2
1
a
12
=
1
0
a
10
=
1
0
a
5
=
1
1
a
11
=
1
1
a
7
=
2
1
a
6
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
22
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
10
, c
11
u 1
c
5
, c
6
, c
7
u + 1
c
8
, c
9
, c
12
u
23
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
6
c
7
, c
10
, c
11
y 1
c
8
, c
9
, c
12
y
24
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 1.00000
0 0
25
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
3
)(u
3
u
2
+ 2u 1)
2
(u
85
+ 24u
84
+ ··· + 97u + 81)
c
2
((u 1)
3
)(u
3
+ u
2
1)
2
(u
85
+ 6u
84
+ ··· + 23u + 9)
c
3
729(u 1)(u
2
2u + 3)(27u
6
27u
5
+ ··· 6u + 1)
· (27u
85
153u
84
+ ··· 229370509u + 33780469)
c
4
729(u 1)(u
2
+ 2u + 3)(27u
6
27u
4
+ 6u
2
+ 1)
· (27u
85
+ 288u
84
+ ··· 8003245u + 2090863)
c
5
((u + 1)
3
)(u
3
u
2
+ 1)
2
(u
85
+ 6u
84
+ ··· + 23u + 9)
c
6
((u + 1)
3
)(u
3
+ u
2
+ 2u + 1)
2
(u
85
+ 24u
84
+ ··· + 97u + 81)
c
7
((u 1)
2
)(u + 1)(u
2
+ u + 1)
3
(u
85
5u
84
+ ··· + 18u + 3)
c
8
, c
9
u(u
2
+ 2)(u
2
u + 1)
3
(u
85
4u
84
+ ··· + 14u 2)
c
10
(u 1)(u + 1)
2
(u
2
u + 1)
3
(u
85
5u
84
+ ··· + 18u + 3)
c
11
u
6
(u 1)(u + 1)
2
(u
85
4u
84
+ ··· 33696u + 5184)
c
12
u(u
2
+ 2)(u
2
+ u + 1)
3
(u
85
4u
84
+ ··· + 14u 2)
26
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
6
((y 1)
3
)(y
3
+ 3y
2
+ 2y 1)
2
(y
85
+ 80y
84
+ ··· + 824593y 6561)
c
2
, c
5
((y 1)
3
)(y
3
y
2
+ 2y 1)
2
(y
85
24y
84
+ ··· + 97y 81)
c
3
531441(y 1)(y
2
+ 2y + 9)
· (729y
6
+ 729y
5
+ 567y
4
+ 216y
3
+ 63y
2
6y + 1)
· (729y
85
+ 3.56 × 10
4
y
84
+ ··· 6.29 × 10
15
y 1.14 × 10
15
)
c
4
531441(y 1)(y
2
+ 2y + 9)(27y
3
27y
2
+ 6y + 1)
2
· (729y
85
51192y
84
+ ··· + 103418130379289y 4371708084769)
c
7
, c
10
((y 1)
3
)(y
2
+ y + 1)
3
(y
85
59y
84
+ ··· + 966y 9)
c
8
, c
9
, c
12
y(y + 2)
2
(y
2
+ y + 1)
3
(y
85
+ 88y
84
+ ··· 52y 4)
c
11
y
6
(y 1)
3
(y
85
38y
84
+ ··· + 3.38163 × 10
8
y 2.68739 × 10
7
)
27