12a
0298
(K12a
0298
)
A knot diagram
1
Linearized knot diagam
3 6 8 10 2 12 1 5 11 4 9 7
Solving Sequence
4,11
10
2,5
6 9 12 7 8 3 1
c
10
c
4
c
5
c
9
c
11
c
6
c
8
c
3
c
1
c
2
, c
7
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h−u
66
10u
64
+ ··· + 4b 4u, u
66
11u
64
+ ··· + 4a 2, u
69
+ 2u
68
+ ··· 2u
2
+ 2i
I
u
2
= h−412u
8
a
2
+ 444u
8
a + ··· 624a + 202, 2u
8
a
2
u
8
a + ··· a + 1,
u
9
u
8
+ 2u
7
u
6
+ 3u
5
u
4
+ 2u
3
+ u + 1i
I
u
3
= h2u
3
+ u
2
+ b + u + 1, u
3
+ 2a + 3u + 2, u
4
+ u
2
+ 2i
I
u
4
= hb + u, a + 2u 1, u
2
+ 1i
I
u
5
= h−u
3
u
2
+ b 2u + 1, u
3
u
2
+ a u, u
4
+ 1i
I
v
1
= ha, b + 1, v 1i
* 6 irreducible components of dim
C
= 0, with total 107 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h−u
66
10u
64
+· · ·+4b4u, u
66
11u
64
+· · ·+4a2, u
69
+2u
68
+· · ·−2u
2
+2i
(i) Arc colorings
a
4
=
0
u
a
11
=
1
0
a
10
=
1
u
2
a
2
=
1
4
u
66
+
11
4
u
64
+ ···
1
2
u +
1
2
1
4
u
66
+
5
2
u
64
+ ···
9
2
u
4
+ u
a
5
=
u
u
3
+ u
a
6
=
1
2
u
68
+
11
2
u
66
+ ··· + u
3
2
u
68
+ u
67
+ ··· +
1
2
u + 1
a
9
=
u
2
+ 1
u
2
a
12
=
u
4
+ u
2
+ 1
u
4
a
7
=
1
4
u
63
5
2
u
61
+ ··· +
1
2
u 1
1
4
u
65
11
4
u
63
+ ···
5
2
u
2
+
1
2
u
a
8
=
u
6
+ u
4
+ 2u
2
+ 1
u
8
+ 2u
6
+ 2u
4
+ 2u
2
a
3
=
u
13
2u
11
5u
9
6u
7
6u
5
4u
3
u
u
15
3u
13
6u
11
9u
9
8u
7
6u
5
2u
3
+ u
a
1
=
1
4
u
61
+
5
2
u
59
+ ··· u
2
+ 1
1
4
u
61
+
9
4
u
59
+ ···
1
2
u
2
+
1
2
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
68
+ 4u
67
+ ··· 10u + 8
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
69
+ 26u
68
+ ··· + 3481u + 256
c
2
, c
5
u
69
+ 2u
68
+ ··· 5u 16
c
3
u
69
2u
68
+ ··· 188076u 54322
c
4
, c
10
u
69
2u
68
+ ··· + 2u
2
2
c
6
, c
7
, c
12
u
69
2u
68
+ ··· 37u 16
c
8
u
69
+ 10u
68
+ ··· 2116u 86
c
9
, c
11
u
69
+ 22u
68
+ ··· + 8u 4
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
69
+ 46y
68
+ ··· 2589327y 65536
c
2
, c
5
y
69
26y
68
+ ··· + 3481y 256
c
3
y
69
26y
68
+ ··· + 15690417448y 2950879684
c
4
, c
10
y
69
+ 22y
68
+ ··· + 8y 4
c
6
, c
7
, c
12
y
69
74y
68
+ ··· 10919y 256
c
8
y
69
2y
68
+ ··· 1189944y 7396
c
9
, c
11
y
69
+ 50y
68
+ ··· + 768y 16
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.735899 + 0.688576I
a = 1.41058 0.11854I
b = 0.96277 + 2.11478I
0.240515 + 0.033439I 1.48136 + 0.I
u = 0.735899 0.688576I
a = 1.41058 + 0.11854I
b = 0.96277 2.11478I
0.240515 0.033439I 1.48136 + 0.I
u = 0.338664 + 0.953969I
a = 0.259722 + 0.602753I
b = 0.242668 + 1.080750I
5.18981 + 0.99757I 4.76342 3.46084I
u = 0.338664 0.953969I
a = 0.259722 0.602753I
b = 0.242668 1.080750I
5.18981 0.99757I 4.76342 + 3.46084I
u = 0.484849 + 0.860276I
a = 1.27015 + 0.75092I
b = 0.89181 + 2.10893I
1.85693 1.13119I 2.07731 + 1.47337I
u = 0.484849 0.860276I
a = 1.27015 0.75092I
b = 0.89181 2.10893I
1.85693 + 1.13119I 2.07731 1.47337I
u = 0.058334 + 1.021690I
a = 0.24060 2.11026I
b = 0.529272 0.918124I
5.74447 0.01900I 8.65927 + 0.I
u = 0.058334 1.021690I
a = 0.24060 + 2.11026I
b = 0.529272 + 0.918124I
5.74447 + 0.01900I 8.65927 + 0.I
u = 0.154964 + 1.031240I
a = 0.85296 + 1.99168I
b = 0.216276 + 0.724886I
3.54966 + 6.72812I 3.30535 7.86468I
u = 0.154964 1.031240I
a = 0.85296 1.99168I
b = 0.216276 0.724886I
3.54966 6.72812I 3.30535 + 7.86468I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.718154 + 0.761613I
a = 0.040869 + 0.875751I
b = 0.531478 + 0.949465I
3.60394 0.19911I 9.90804 + 0.I
u = 0.718154 0.761613I
a = 0.040869 0.875751I
b = 0.531478 0.949465I
3.60394 + 0.19911I 9.90804 + 0.I
u = 0.422383 + 0.968673I
a = 0.599532 + 1.252790I
b = 1.85369 + 1.47586I
3.61056 + 4.51985I 0
u = 0.422383 0.968673I
a = 0.599532 1.252790I
b = 1.85369 1.47586I
3.61056 4.51985I 0
u = 0.193872 + 1.039360I
a = 0.624526 + 0.079575I
b = 0.927525 0.005005I
4.24263 + 5.04361I 0. 4.03426I
u = 0.193872 1.039360I
a = 0.624526 0.079575I
b = 0.927525 + 0.005005I
4.24263 5.04361I 0. + 4.03426I
u = 0.721986 + 0.582383I
a = 1.020400 0.497911I
b = 1.35891 + 1.25471I
3.90829 + 1.18050I 7.40920 3.02522I
u = 0.721986 0.582383I
a = 1.020400 + 0.497911I
b = 1.35891 1.25471I
3.90829 1.18050I 7.40920 + 3.02522I
u = 0.814686 + 0.705728I
a = 2.39011 + 0.79666I
b = 2.59506 2.01293I
2.93810 + 6.44249I 0
u = 0.814686 0.705728I
a = 2.39011 0.79666I
b = 2.59506 + 2.01293I
2.93810 6.44249I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.028573 + 1.077810I
a = 0.61215 1.87207I
b = 0.511359 0.452462I
1.60521 + 2.06429I 0
u = 0.028573 1.077810I
a = 0.61215 + 1.87207I
b = 0.511359 + 0.452462I
1.60521 2.06429I 0
u = 0.170360 + 1.066470I
a = 0.37501 + 2.28994I
b = 0.350653 + 0.759401I
2.10642 10.83270I 0. + 7.91871I
u = 0.170360 1.066470I
a = 0.37501 2.28994I
b = 0.350653 0.759401I
2.10642 + 10.83270I 0. 7.91871I
u = 0.836381 + 0.694622I
a = 2.53666 + 0.36324I
b = 2.27305 2.69677I
8.89008 10.76610I 0
u = 0.836381 0.694622I
a = 2.53666 0.36324I
b = 2.27305 + 2.69677I
8.89008 + 10.76610I 0
u = 0.833721 + 0.715169I
a = 0.612597 + 0.721125I
b = 0.402951 + 0.631456I
11.06750 + 4.64835I 0
u = 0.833721 0.715169I
a = 0.612597 0.721125I
b = 0.402951 0.631456I
11.06750 4.64835I 0
u = 0.788117 + 0.777559I
a = 0.860399 0.145200I
b = 1.208460 0.042361I
4.23303 3.52292I 0
u = 0.788117 0.777559I
a = 0.860399 + 0.145200I
b = 1.208460 + 0.042361I
4.23303 + 3.52292I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.821959 + 0.782703I
a = 1.141410 + 0.345243I
b = 0.680996 0.881071I
12.26590 0.79570I 0
u = 0.821959 0.782703I
a = 1.141410 0.345243I
b = 0.680996 + 0.881071I
12.26590 + 0.79570I 0
u = 0.611116 + 0.956461I
a = 0.49978 2.05095I
b = 2.42886 2.48221I
2.54832 + 5.58402I 0
u = 0.611116 0.956461I
a = 0.49978 + 2.05095I
b = 2.42886 + 2.48221I
2.54832 5.58402I 0
u = 0.814707 + 0.809092I
a = 0.295475 0.322981I
b = 0.913082 1.062150I
10.93290 + 7.02859I 0
u = 0.814707 0.809092I
a = 0.295475 + 0.322981I
b = 0.913082 + 1.062150I
10.93290 7.02859I 0
u = 0.695607 + 0.941949I
a = 0.886074 0.080146I
b = 0.262992 0.787216I
3.05990 + 5.61567I 0
u = 0.695607 0.941949I
a = 0.886074 + 0.080146I
b = 0.262992 + 0.787216I
3.05990 5.61567I 0
u = 0.044024 + 0.818063I
a = 0.652335 0.322162I
b = 0.167905 + 0.623453I
1.27770 1.44146I 0.19549 + 5.54807I
u = 0.044024 0.818063I
a = 0.652335 + 0.322162I
b = 0.167905 0.623453I
1.27770 + 1.44146I 0.19549 5.54807I
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.613808 + 1.009340I
a = 0.84248 1.87193I
b = 2.04716 2.64513I
1.96131 8.32605I 0
u = 0.613808 1.009340I
a = 0.84248 + 1.87193I
b = 2.04716 + 2.64513I
1.96131 + 8.32605I 0
u = 0.662707 + 0.477450I
a = 1.86190 + 0.54426I
b = 0.57360 + 1.90850I
3.39108 + 3.42806I 6.35256 3.02642I
u = 0.662707 0.477450I
a = 1.86190 0.54426I
b = 0.57360 1.90850I
3.39108 3.42806I 6.35256 + 3.02642I
u = 0.737691 + 0.955567I
a = 0.388118 0.820537I
b = 0.573332 + 0.251331I
3.68498 2.23055I 0
u = 0.737691 0.955567I
a = 0.388118 + 0.820537I
b = 0.573332 0.251331I
3.68498 + 2.23055I 0
u = 0.689892 + 0.991018I
a = 0.09117 1.66872I
b = 2.85026 1.61053I
1.14588 5.49156I 0
u = 0.689892 0.991018I
a = 0.09117 + 1.66872I
b = 2.85026 + 1.61053I
1.14588 + 5.49156I 0
u = 0.659252 + 1.016190I
a = 0.137976 1.363260I
b = 2.56392 0.66959I
2.66779 + 4.10740I 0
u = 0.659252 1.016190I
a = 0.137976 + 1.363260I
b = 2.56392 + 0.66959I
2.66779 4.10740I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.771414 + 0.943358I
a = 0.552899 0.216552I
b = 0.327428 + 0.913552I
10.51840 1.09087I 0
u = 0.771414 0.943358I
a = 0.552899 + 0.216552I
b = 0.327428 0.913552I
10.51840 + 1.09087I 0
u = 0.764178 + 0.965173I
a = 0.412858 + 1.010290I
b = 1.49440 + 0.94058I
11.70390 5.14096I 0
u = 0.764178 0.965173I
a = 0.412858 1.010290I
b = 1.49440 0.94058I
11.70390 + 5.14096I 0
u = 0.729127 + 1.006320I
a = 0.85456 + 2.40770I
b = 4.06882 + 0.97788I
2.02182 12.24190I 0
u = 0.729127 1.006320I
a = 0.85456 2.40770I
b = 4.06882 0.97788I
2.02182 + 12.24190I 0
u = 0.741771 + 1.008840I
a = 0.545247 0.543242I
b = 0.321004 1.292670I
10.1674 10.5435I 0
u = 0.741771 1.008840I
a = 0.545247 + 0.543242I
b = 0.321004 + 1.292670I
10.1674 + 10.5435I 0
u = 0.734769 + 1.019640I
a = 0.36453 + 2.55787I
b = 4.11635 + 1.81421I
7.8960 + 16.6434I 0
u = 0.734769 1.019640I
a = 0.36453 2.55787I
b = 4.11635 1.81421I
7.8960 16.6434I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.670400 + 0.147828I
a = 1.80229 + 0.50503I
b = 1.30651 0.96838I
6.05766 8.22168I 7.69702 + 5.92932I
u = 0.670400 0.147828I
a = 1.80229 0.50503I
b = 1.30651 + 0.96838I
6.05766 + 8.22168I 7.69702 5.92932I
u = 0.656891 + 0.088355I
a = 0.868107 1.024770I
b = 0.163464 0.301668I
7.87968 + 2.33195I 10.31373 1.18340I
u = 0.656891 0.088355I
a = 0.868107 + 1.024770I
b = 0.163464 + 0.301668I
7.87968 2.33195I 10.31373 + 1.18340I
u = 0.412551 + 0.453150I
a = 1.75896 0.29485I
b = 0.385319 + 1.182700I
1.61119 1.13122I 1.25895 + 1.21665I
u = 0.412551 0.453150I
a = 1.75896 + 0.29485I
b = 0.385319 1.182700I
1.61119 + 1.13122I 1.25895 1.21665I
u = 0.591730 + 0.129745I
a = 1.49243 + 0.30843I
b = 0.650903 1.070410I
0.12986 + 4.40376I 4.64576 6.38172I
u = 0.591730 0.129745I
a = 1.49243 0.30843I
b = 0.650903 + 1.070410I
0.12986 4.40376I 4.64576 + 6.38172I
u = 0.371894
a = 0.571634
b = 0.480013
0.931539 11.9680
11
II. I
u
2
= h−412u
8
a
2
+ 444u
8
a + · · · 624a + 202, 2u
8
a
2
u
8
a + · · · a +
1, u
9
u
8
+ 2u
7
u
6
+ 3u
5
u
4
+ 2u
3
+ u + 1i
(i) Arc colorings
a
4
=
0
u
a
11
=
1
0
a
10
=
1
u
2
a
2
=
a
0.235026a
2
u
8
0.253280au
8
+ ··· + 0.355961a 0.115231
a
5
=
u
u
3
+ u
a
6
=
1.13862a
2
u
8
+ 0.287507au
8
+ ··· + 0.190531a 0.247576
0.854535a
2
u
8
+ 1.25385au
8
+ ··· 1.11352a + 0.309184
a
9
=
u
2
+ 1
u
2
a
12
=
u
4
+ u
2
+ 1
u
4
a
7
=
0.983457a
2
u
8
0.108386au
8
+ ··· 0.0638905a 0.851112
0.826013a
2
u
8
+ 1.34284au
8
+ ··· 1.29264a + 0.565887
a
8
=
u
6
+ u
4
+ 2u
2
+ 1
u
8
+ 2u
6
+ 2u
4
+ 2u
2
a
3
=
u
4
+ u
2
+ 1
u
4
a
1
=
0.142042a
2
u
8
+ 0.483172au
8
+ ··· 0.652025a + 0.278380
0.157444a
2
u
8
0.451226au
8
+ ··· 0.771249a 1.41700
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
7
+ 4u
6
4u
5
+ 4u
4
8u
3
+ 4u
2
+ 6
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
27
+ 18u
26
+ ··· + u + 1
c
2
, c
5
, c
6
c
7
, c
12
u
27
9u
25
+ ··· + u + 1
c
3
(u
9
+ u
8
2u
7
3u
6
+ u
5
+ 3u
4
+ 2u
3
u 1)
3
c
4
, c
10
(u
9
+ u
8
+ 2u
7
+ u
6
+ 3u
5
+ u
4
+ 2u
3
+ u 1)
3
c
8
(u
9
5u
8
+ 12u
7
15u
6
+ 9u
5
+ u
4
4u
3
+ 2u
2
+ u 1)
3
c
9
, c
11
(u
9
+ 3u
8
+ 8u
7
+ 13u
6
+ 17u
5
+ 17u
4
+ 12u
3
+ 6u
2
+ u 1)
3
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
27
18y
26
+ ··· + y 1
c
2
, c
5
, c
6
c
7
, c
12
y
27
18y
26
+ ··· + y 1
c
3
(y
9
5y
8
+ 12y
7
15y
6
+ 9y
5
+ y
4
4y
3
+ 2y
2
+ y 1)
3
c
4
, c
10
(y
9
+ 3y
8
+ 8y
7
+ 13y
6
+ 17y
5
+ 17y
4
+ 12y
3
+ 6y
2
+ y 1)
3
c
8
(y
9
y
8
+ 12y
7
7y
6
+ 37y
5
+ y
4
10y
2
+ 5y 1)
3
c
9
, c
11
(y
9
+ 7y
8
+ 20y
7
+ 25y
6
+ 5y
5
15y
4
+ 22y
2
+ 13y 1)
3
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.140343 + 0.966856I
a = 1.25673 + 1.05313I
b = 0.049646 + 0.706168I
1.78344 2.09337I 0.51499 + 4.16283I
u = 0.140343 + 0.966856I
a = 0.163898 0.278866I
b = 0.601292 + 0.256808I
1.78344 2.09337I 0.51499 + 4.16283I
u = 0.140343 + 0.966856I
a = 0.01736 2.34952I
b = 0.95932 1.47752I
1.78344 2.09337I 0.51499 + 4.16283I
u = 0.140343 0.966856I
a = 1.25673 1.05313I
b = 0.049646 0.706168I
1.78344 + 2.09337I 0.51499 4.16283I
u = 0.140343 0.966856I
a = 0.163898 + 0.278866I
b = 0.601292 0.256808I
1.78344 + 2.09337I 0.51499 4.16283I
u = 0.140343 0.966856I
a = 0.01736 + 2.34952I
b = 0.95932 + 1.47752I
1.78344 + 2.09337I 0.51499 4.16283I
u = 0.628449 + 0.875112I
a = 0.0738554 + 0.0112823I
b = 0.329184 + 0.287114I
0.61694 2.45442I 2.32792 + 2.91298I
u = 0.628449 + 0.875112I
a = 2.10033 + 0.25220I
b = 0.22682 + 3.11202I
0.61694 2.45442I 2.32792 + 2.91298I
u = 0.628449 + 0.875112I
a = 0.05733 2.33941I
b = 2.96621 2.53925I
0.61694 2.45442I 2.32792 + 2.91298I
u = 0.628449 0.875112I
a = 0.0738554 0.0112823I
b = 0.329184 0.287114I
0.61694 + 2.45442I 2.32792 2.91298I
15
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.628449 0.875112I
a = 2.10033 0.25220I
b = 0.22682 3.11202I
0.61694 + 2.45442I 2.32792 2.91298I
u = 0.628449 0.875112I
a = 0.05733 + 2.33941I
b = 2.96621 + 2.53925I
0.61694 + 2.45442I 2.32792 2.91298I
u = 0.796005 + 0.733148I
a = 0.897099 + 0.478488I
b = 0.366734 + 0.756648I
4.37135 1.33617I 7.28409 + 0.70175I
u = 0.796005 + 0.733148I
a = 1.64130 0.08440I
b = 1.01907 + 2.73861I
4.37135 1.33617I 7.28409 + 0.70175I
u = 0.796005 + 0.733148I
a = 1.69292 + 1.13699I
b = 2.24611 0.83019I
4.37135 1.33617I 7.28409 + 0.70175I
u = 0.796005 0.733148I
a = 0.897099 0.478488I
b = 0.366734 0.756648I
4.37135 + 1.33617I 7.28409 0.70175I
u = 0.796005 0.733148I
a = 1.64130 + 0.08440I
b = 1.01907 2.73861I
4.37135 + 1.33617I 7.28409 0.70175I
u = 0.796005 0.733148I
a = 1.69292 1.13699I
b = 2.24611 + 0.83019I
4.37135 + 1.33617I 7.28409 0.70175I
u = 0.728966 + 0.986295I
a = 0.280859 0.864363I
b = 0.366463 0.892237I
3.59813 + 7.08493I 5.57680 5.91335I
u = 0.728966 + 0.986295I
a = 0.12458 1.78606I
b = 3.23510 2.02570I
3.59813 + 7.08493I 5.57680 5.91335I
16
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.728966 + 0.986295I
a = 1.25383 + 1.67614I
b = 3.12748 0.01225I
3.59813 + 7.08493I 5.57680 5.91335I
u = 0.728966 0.986295I
a = 0.280859 + 0.864363I
b = 0.366463 + 0.892237I
3.59813 7.08493I 5.57680 + 5.91335I
u = 0.728966 0.986295I
a = 0.12458 + 1.78606I
b = 3.23510 + 2.02570I
3.59813 7.08493I 5.57680 + 5.91335I
u = 0.728966 0.986295I
a = 1.25383 1.67614I
b = 3.12748 + 0.01225I
3.59813 7.08493I 5.57680 + 5.91335I
u = 0.512358
a = 0.923120 + 0.394259I
b = 0.085863 0.444563I
1.19845 8.65230
u = 0.512358
a = 0.923120 0.394259I
b = 0.085863 + 0.444563I
1.19845 8.65230
u = 0.512358
a = 3.08692
b = 1.39464
1.19845 8.65230
17
III. I
u
3
= h2u
3
+ u
2
+ b + u + 1, u
3
+ 2a + 3u + 2, u
4
+ u
2
+ 2i
(i) Arc colorings
a
4
=
0
u
a
11
=
1
0
a
10
=
1
u
2
a
2
=
1
2
u
3
3
2
u 1
2u
3
u
2
u 1
a
5
=
u
u
3
+ u
a
6
=
1
2
u
3
1
2
u 1
u
3
u
2
1
a
9
=
u
2
+ 1
u
2
a
12
=
1
u
2
2
a
7
=
1
2
u
3
1
2
u
u
3
+ 1
a
8
=
1
u
2
+ 2
a
3
=
u
u
3
u
a
1
=
1
2
u
3
1
2
u 1
u
3
u
2
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
2
18
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
, c
6
c
7
(u 1)
4
c
2
, c
12
(u + 1)
4
c
3
, c
4
, c
8
c
10
u
4
+ u
2
+ 2
c
9
(u
2
u + 2)
2
c
11
(u
2
+ u + 2)
2
19
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
6
, c
7
, c
12
(y 1)
4
c
3
, c
4
, c
8
c
10
(y
2
+ y + 2)
2
c
9
, c
11
(y
2
+ 3y + 4)
2
20
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.676097 + 0.978318I
a = 1.19802 1.67009I
b = 2.08839 3.11166I
0.82247 + 5.33349I 2.00000 5.29150I
u = 0.676097 0.978318I
a = 1.19802 + 1.67009I
b = 2.08839 + 3.11166I
0.82247 5.33349I 2.00000 + 5.29150I
u = 0.676097 + 0.978318I
a = 0.80198 1.67009I
b = 3.08839 0.46591I
0.82247 5.33349I 2.00000 + 5.29150I
u = 0.676097 0.978318I
a = 0.80198 + 1.67009I
b = 3.08839 + 0.46591I
0.82247 + 5.33349I 2.00000 5.29150I
21
IV. I
u
4
= hb + u, a + 2u 1, u
2
+ 1i
(i) Arc colorings
a
4
=
0
u
a
11
=
1
0
a
10
=
1
1
a
2
=
2u + 1
u
a
5
=
u
0
a
6
=
u + 1
u
a
9
=
0
1
a
12
=
1
1
a
7
=
u
u 1
a
8
=
1
1
a
3
=
u
0
a
1
=
u + 1
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4
22
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
, c
6
c
7
, c
9
(u 1)
2
c
2
, c
11
, c
12
(u + 1)
2
c
3
, c
4
, c
8
c
10
u
2
+ 1
23
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
6
, c
7
, c
9
c
11
, c
12
(y 1)
2
c
3
, c
4
, c
8
c
10
(y + 1)
2
24
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.000000I
a = 1.00000 2.00000I
b = 1.000000I
3.28987 4.00000
u = 1.000000I
a = 1.00000 + 2.00000I
b = 1.000000I
3.28987 4.00000
25
V. I
u
5
= h−u
3
u
2
+ b 2u + 1, u
3
u
2
+ a u, u
4
+ 1i
(i) Arc colorings
a
4
=
0
u
a
11
=
1
0
a
10
=
1
u
2
a
2
=
u
3
+ u
2
+ u
u
3
+ u
2
+ 2u 1
a
5
=
u
u
3
+ u
a
6
=
u
3
u
2
u
2
u + 1
a
9
=
u
2
+ 1
u
2
a
12
=
u
2
1
a
7
=
u
3
u
2
u
a
8
=
u
2
1
a
3
=
u
u
3
+ u
a
1
=
u
3
+ u
2
u
2
+ u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4
26
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
12
(u 1)
4
c
3
, c
4
, c
8
c
10
u
4
+ 1
c
5
, c
6
, c
7
(u + 1)
4
c
9
, c
11
(u
2
+ 1)
2
27
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
6
, c
7
, c
12
(y 1)
4
c
3
, c
4
, c
8
c
10
(y
2
+ 1)
2
c
9
, c
11
(y + 1)
4
28
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.707107 + 0.707107I
a = 1.41421 + 1.00000I
b = 0.29289 + 3.12132I
1.64493 4.00000
u = 0.707107 0.707107I
a = 1.41421 1.00000I
b = 0.29289 3.12132I
1.64493 4.00000
u = 0.707107 + 0.707107I
a = 1.41421 1.00000I
b = 1.70711 + 1.12132I
1.64493 4.00000
u = 0.707107 0.707107I
a = 1.41421 + 1.00000I
b = 1.70711 1.12132I
1.64493 4.00000
29
VI. I
v
1
= ha, b + 1, v 1i
(i) Arc colorings
a
4
=
1
0
a
11
=
1
0
a
10
=
1
0
a
2
=
0
1
a
5
=
1
0
a
6
=
1
1
a
9
=
1
0
a
12
=
1
0
a
7
=
2
1
a
8
=
1
0
a
3
=
1
0
a
1
=
1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
30
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
12
u 1
c
3
, c
4
, c
8
c
9
, c
10
, c
11
u
c
5
, c
6
, c
7
u + 1
31
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
6
, c
7
, c
12
y 1
c
3
, c
4
, c
8
c
9
, c
10
, c
11
y
32
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 1.00000
0 0
33
VII. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
11
)(u
27
+ 18u
26
+ ··· + u + 1)(u
69
+ 26u
68
+ ··· + 3481u + 256)
c
2
((u 1)
5
)(u + 1)
6
(u
27
9u
25
+ ··· + u + 1)(u
69
+ 2u
68
+ ··· 5u 16)
c
3
u(u
2
+ 1)(u
4
+ 1)(u
4
+ u
2
+ 2)
· (u
9
+ u
8
2u
7
3u
6
+ u
5
+ 3u
4
+ 2u
3
u 1)
3
· (u
69
2u
68
+ ··· 188076u 54322)
c
4
, c
10
u(u
2
+ 1)(u
4
+ 1)(u
4
+ u
2
+ 2)(u
9
+ u
8
+ ··· + u 1)
3
· (u
69
2u
68
+ ··· + 2u
2
2)
c
5
((u 1)
6
)(u + 1)
5
(u
27
9u
25
+ ··· + u + 1)(u
69
+ 2u
68
+ ··· 5u 16)
c
6
, c
7
((u 1)
6
)(u + 1)
5
(u
27
9u
25
+ ··· + u + 1)
· (u
69
2u
68
+ ··· 37u 16)
c
8
u(u
2
+ 1)(u
4
+ 1)(u
4
+ u
2
+ 2)
· (u
9
5u
8
+ 12u
7
15u
6
+ 9u
5
+ u
4
4u
3
+ 2u
2
+ u 1)
3
· (u
69
+ 10u
68
+ ··· 2116u 86)
c
9
u(u 1)
2
(u
2
+ 1)
2
(u
2
u + 2)
2
· (u
9
+ 3u
8
+ 8u
7
+ 13u
6
+ 17u
5
+ 17u
4
+ 12u
3
+ 6u
2
+ u 1)
3
· (u
69
+ 22u
68
+ ··· + 8u 4)
c
11
u(u + 1)
2
(u
2
+ 1)
2
(u
2
+ u + 2)
2
· (u
9
+ 3u
8
+ 8u
7
+ 13u
6
+ 17u
5
+ 17u
4
+ 12u
3
+ 6u
2
+ u 1)
3
· (u
69
+ 22u
68
+ ··· + 8u 4)
c
12
((u 1)
5
)(u + 1)
6
(u
27
9u
25
+ ··· + u + 1)
· (u
69
2u
68
+ ··· 37u 16)
34
VIII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
11
)(y
27
18y
26
+ ··· + y 1)
· (y
69
+ 46y
68
+ ··· 2589327y 65536)
c
2
, c
5
((y 1)
11
)(y
27
18y
26
+ ··· + y 1)(y
69
26y
68
+ ··· + 3481y 256)
c
3
y(y + 1)
2
(y
2
+ 1)
2
(y
2
+ y + 2)
2
· (y
9
5y
8
+ 12y
7
15y
6
+ 9y
5
+ y
4
4y
3
+ 2y
2
+ y 1)
3
· (y
69
26y
68
+ ··· + 15690417448y 2950879684)
c
4
, c
10
y(y + 1)
2
(y
2
+ 1)
2
(y
2
+ y + 2)
2
· (y
9
+ 3y
8
+ 8y
7
+ 13y
6
+ 17y
5
+ 17y
4
+ 12y
3
+ 6y
2
+ y 1)
3
· (y
69
+ 22y
68
+ ··· + 8y 4)
c
6
, c
7
, c
12
((y 1)
11
)(y
27
18y
26
+ ··· + y 1)
· (y
69
74y
68
+ ··· 10919y 256)
c
8
y(y + 1)
2
(y
2
+ 1)
2
(y
2
+ y + 2)
2
· (y
9
y
8
+ 12y
7
7y
6
+ 37y
5
+ y
4
10y
2
+ 5y 1)
3
· (y
69
2y
68
+ ··· 1189944y 7396)
c
9
, c
11
y(y 1)
2
(y + 1)
4
(y
2
+ 3y + 4)
2
· (y
9
+ 7y
8
+ 20y
7
+ 25y
6
+ 5y
5
15y
4
+ 22y
2
+ 13y 1)
3
· (y
69
+ 50y
68
+ ··· + 768y 16)
35